/* * Copyright (c) 2020-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include "trtllmGen_bmm_export/trtllm/gen/DtypeDecl.h" namespace tensorrt_llm { namespace kernels { // Keep this in sync with the ActType in // cpp/tensorrt_llm/kernels/trtllmGenKernels/batchedGemm/trtllmGen_bmm_export/GemmGatedActOptions.h enum class ActType { // For ActType == SwiGlu, ideally we would like to have something like // gatedAct = scaleC * (x0 * scaleAb + beta) * ((x1 * scaleGate) * sigmoid(alpha * x1 * // scaleGate)). // But for now, we use the simplified version // gatedAct = scaleC' * (x0 + beta') * ((x1 * scaleGate) * sigmoid(alpha * x1 * scaleGate)), // where x0 and x1 are the raw numbers from Gemm, while scaleC and scaleGate are input scales, // beta' = beta / scaleAb, scaleC' = scaleC * scaleAb. // // GatedSilu is a special case of SwiGlu where the alpha is 1.0 and the beta is 0.0. SwiGlu }; struct TrtllmGenBatchedGemmRunnerOptions { batchedGemm::trtllm::gen::Dtype dtypeA; batchedGemm::trtllm::gen::Dtype dtypeB; batchedGemm::trtllm::gen::Dtype dtypeC; ActType actType{ActType::SwiGlu}; bool deepSeekFp8{false}; bool fusedAct{false}; bool routeAct{false}; bool staticBatch{false}; bool transposeMmaOutput{false}; int32_t tileSize{8}; int32_t epilogueTileM{128}; }; class TrtllmGenBatchedGemmRunner { public: explicit TrtllmGenBatchedGemmRunner(TrtllmGenBatchedGemmRunnerOptions const& options); [[nodiscard]] size_t getWorkspaceSizeInBytes(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim, int32_t configIndex) const; // Generic GEMM interface void run(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim, void const* a, void const* sfA, void const* b, void const* sfB, void const* perTokensSfA, void const* perTokensSfB, float const* scaleC, float const* scaleGateC, float const* bias, float const* swiGluAlpha, float const* swiGluBeta, float const* clampLimit, void* c, void* outSfC, int32_t const* routeMap, int32_t const* totalNumPaddedTokens, int32_t const* ctaIdxXyToBatchIdx, int32_t const* ctaIdxXyToMnLimit, int32_t const* numNonExitingCtas, void* workspace, CUstream stream, int device, int32_t configIndex); // Block-scaling GEMM void run(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, void const* a, void const* sfA, void const* b, void const* sfB, void* c, void* outSfC, void* workspace, CUstream stream, int device, int32_t configIndex); // Block-scaling GEMM with SwiGLU activation void run(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, void const* a, void const* sfA, void const* b, void const* sfB, float const* bias, float const* swiGluAlpha, float const* swiGluBeta, float const* clampLimit, void* c, void* outSfC, void* workspace, CUstream stream, int device, int32_t configIndex); // FP8 per-tensor scaling GEMM void run(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, void const* a, void const* b, float const* scaleC, float const* scaleGateC, void* c, void* workspace, CUstream stream, int device, int32_t configIndex); // Get the list of configs that passed the validation based on the constructor options [[nodiscard]] std::vector getPassingConfigIndices() const { return mPassingConfigIndices; } // Get the list of config indices that are valid for the given problem shape [[nodiscard]] std::vector getValidConfigIndices(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim) const; // Get a default config index that is valid for the given problem shape // This will be used as the fallback config if using auto-tuning [[nodiscard]] int64_t getDefaultValidConfigIndex(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim) const; [[nodiscard]] bool isValidConfigIndex(int32_t configIndex, int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim) const; private: void selectGemmConfig(int32_t m, int32_t n, int32_t k, std::vector const& batchedTokens, int32_t numTokens, int32_t numBatches, int32_t maxNumCtasInBatchDim); private: TrtllmGenBatchedGemmRunnerOptions mOptions; std::vector mPassingConfigIndices; }; } // namespace kernels } // namespace tensorrt_llm