/* * SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/common/quantization.h" #include "tensorrt_llm/kernels/cutlass_kernels/fpA_intB_gemm/fpA_intB_gemm.h" #include "tensorrt_llm/kernels/preQuantScaleKernel.h" #include "tensorrt_llm/kernels/weightOnlyBatchedGemv//kernelLauncher.h" #include "tensorrt_llm/plugins/common/gemmPluginProfiler.h" #include "tensorrt_llm/plugins/common/plugin.h" #include "tensorrt_llm/plugins/weightOnlyQuantMatmulPlugin/weightOnlyQuantMatmulPlugin.h" #include #include #include #include #include #include #include // The blank line here is to avoid clang-format -sort-includes option reordering these two cutlass header files and // breaking dependencies #include "cutlass/integer_subbyte.h" namespace tensorrt_llm::plugins { using WeightOnlyGemmRunner = tensorrt_llm::kernels::cutlass_kernels::CutlassFpAIntBGemmRunnerInterface; using WeightOnlyGemmRunnerPtr = std::shared_ptr; using KernelType = tensorrt_llm::kernels::weight_only::KernelType; class WeightOnlyGroupwiseQuantGemmPluginProfiler : public GemmPluginProfiler { public: using Config = tensorrt_llm::cutlass_extensions::CutlassGemmConfig; void setQuantAlgo(int quantAlgo) { mQuantAlgo = quantAlgo; } void setGroupSize(int groupSize) { mGroupSize = groupSize; } void setCudaKernelType(KernelType cudaKernelType, int arch) { mCudaKernelType = cudaKernelType; mArch = arch; } protected: void runTactic(int m, int n, int k, Config const& tactic, char* workspace, cudaStream_t const& stream) override; void computeTmpSize(size_t maxM, size_t n, size_t k) override; std::vector getTactics(int m, int n, int k) const override; bool checkTactic(int m, int n, int k, Config const& tactic) const override; private: int mQuantAlgo; int mGroupSize; KernelType mCudaKernelType; int mArch; }; class WeightOnlyGroupwiseQuantMatmulPlugin : public BasePlugin { public: using PluginProfilerPtr = std::shared_ptr; WeightOnlyGroupwiseQuantMatmulPlugin() = delete; WeightOnlyGroupwiseQuantMatmulPlugin( nvinfer1::DataType type, int quant_algo, int group_size, float alpha, PluginProfilerPtr const& profiler); WeightOnlyGroupwiseQuantMatmulPlugin(void const* data, size_t length, PluginProfilerPtr const& profiler); ~WeightOnlyGroupwiseQuantMatmulPlugin() override = default; // IPluginV2DynamicExt Methods nvinfer1::IPluginV2DynamicExt* clone() const noexcept override; nvinfer1::DimsExprs getOutputDimensions(int outputIndex, nvinfer1::DimsExprs const* inputs, int nbInputs, nvinfer1::IExprBuilder& exprBuilder) noexcept override; bool supportsFormatCombination( int pos, nvinfer1::PluginTensorDesc const* inOut, int nbInputs, int nbOutputs) noexcept override; void configurePlugin(nvinfer1::DynamicPluginTensorDesc const* in, int nbInputs, nvinfer1::DynamicPluginTensorDesc const* out, int nbOutputs) noexcept override; size_t getWorkspaceSize(nvinfer1::PluginTensorDesc const* inputs, int nbInputs, nvinfer1::PluginTensorDesc const* outputs, int nbOutputs) const noexcept override; int enqueue(nvinfer1::PluginTensorDesc const* inputDesc, nvinfer1::PluginTensorDesc const* outputDesc, void const* const* inputs, void* const* outputs, void* workspace, cudaStream_t stream) noexcept override; // IPluginV2Ext Methods nvinfer1::DataType getOutputDataType( int index, nvinfer1::DataType const* inputTypes, int nbInputs) const noexcept override; // IPluginV2 Methods char const* getPluginType() const noexcept override; char const* getPluginVersion() const noexcept override; int getNbOutputs() const noexcept override; int initialize() noexcept override; void terminate() noexcept override; size_t getSerializationSize() const noexcept override; void serialize(void* buffer) const noexcept override; void destroy() noexcept override; private: // group_size: 64, 128 void init(nvinfer1::DataType type, int quant_algo, int group_size, float alpha); void configGemm(); private: const std::string mLayerName; WeightOnlyGemmRunnerPtr m_weightOnlyGroupwiseGemmRunner; size_t m_workspaceMaxSize; nvinfer1::DataType mType; bool mCudaKernelEnabled; tensorrt_llm::kernels::weight_only::KernelType mCudaKernelType; int mArch; // When M is smaller than this value, we trigger a fast path // I.e. a tailored kernel instead of cutlass. int mQuantAlgo; int mGroupSize; float mAlpha = 1.0f; int mPreQuantScaleInputIdx; int mWeightInputIdx; int mScalesInputIdx; int mZerosInputIdx; int mBiasesInputIdx; GemmDims mDims{}; GemmIdCore mGemmId{}; PluginProfilerPtr mPluginProfiler; }; class WeightOnlyGroupwiseQuantMatmulPluginCreator : public BaseCreator { public: WeightOnlyGroupwiseQuantMatmulPluginCreator(); char const* getPluginName() const noexcept override; char const* getPluginVersion() const noexcept override; nvinfer1::PluginFieldCollection const* getFieldNames() noexcept override; nvinfer1::IPluginV2* createPlugin(char const* name, nvinfer1::PluginFieldCollection const* fc) noexcept override; nvinfer1::IPluginV2* deserializePlugin( char const* name, void const* serialData, size_t serialLength) noexcept override; private: GemmPluginProfilerManager gemmPluginProfileManager; static nvinfer1::PluginFieldCollection mFC; static std::vector mPluginAttributes; }; } // namespace tensorrt_llm::plugins