## ViT in MultiModal This document uses the [LLaVA-NeXT](https://huggingface.co/collections/llava-hf/llava-next-65f75c4afac77fd37dbbe6cf) model as an example to show how to build the vision encoder in TRTLLM. LLaVA-NeXT is an extension of LLaVA. TRT-LLM currently supports [Mistral-7b](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) and [ Nous-Hermes-2-Yi-34B](https://huggingface.co/llava-hf/llava-v1.6-34b-hf) variant of LLaVA-NeXT. 1. Download Huggingface model weights. These models have both visual and LLM components unlike BLIP2 example which downloads only LLM components from Huggingface. ```bash export MODEL_NAME="llava-v1.6-mistral-7b-hf" #for 34b variant "llava-v1.6-34b-hf" git clone https://huggingface.co/llava-hf/${MODEL_NAME} tmp/hf_models/${MODEL_NAME} ``` 2. Generate TRT-LLM engine for visual component ```bash python ./convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu/vision \ --dtype float16 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu/vision \ --output_dir tmp/trt_engines/${MODEL_NAME}/fp16/1-gpu/vision \ --remove_input_padding disable \ --bert_attention_plugin disable \ --max_batch_size 8 # copy the image newlines tensor to engine directory cp tmp/trt_models/${MODEL_NAME}/fp16/1-gpu/vision/image_newlines.safetensors tmp/trt_engines/${MODEL_NAME}/fp16/1-gpu/vision ``` 3. Generate TRT-LLM engine for LLaMA following example in `examples/models/core/llama/README.md` ```bash python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu/llm \ --dtype float16 trtllm-build \ --checkpoint_dir tmp/trt_models/${MODEL_NAME}/fp16/1-gpu/llm \ --output_dir tmp/trt_engines/${MODEL_NAME}/fp16/1-gpu/llm \ --gpt_attention_plugin float16 \ --gemm_plugin float16 \ --use_fused_mlp=enable \ --max_batch_size 8 \ --max_input_len 4096 \ --max_seq_len 5120 \ --max_num_tokens 32768 \ --max_multimodal_len 32768 # 8 (max_batch_size) * 4096 (max_input_len) ``` 4. Run ```bash python ../multimodal/run.py \ --max_new_tokens 30 \ --hf_model_dir tmp/hf_models/${MODEL_NAME} \ --engine_dir tmp/trt_engines/${MODEL_NAME}/fp16/1-gpu \ --input_text "Question: which city is this? Answer:" ``` 4. (Optional) Different quantization methods supported in LLaMA can be applied to LLaVA-Next as well, such as INT4/INT8 weight-only, SmoothQuant, and INT4 Activation-Aware Quantization (AWQ). Detailed instructions can be found in LLaMA [README](../llama/README.md). For example, ```bash # INT4 weight only python ../llama/convert_checkpoint.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --dtype float16 \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_weightonly/1-gpu/llm \ --use_weight_only \ --weight_only_precision int4 # INT4 AWQ python ../../../quantization/quantize.py \ --model_dir tmp/hf_models/${MODEL_NAME} \ --output_dir tmp/trt_models/${MODEL_NAME}/int4_awq/1-gpu/llm \ --dtype float16 \ --qformat int4_awq \ --calib_size 32 ``` Then follow the same `trtllm-build` and `run.py` steps as before. NOTE: for `trtllm-build` command, do not use `--use_fused_mlp=enable` in these quantization modes.