# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from defs.common import convert_weights, parse_mpi_cmd, venv_mpi_check_call from defs.conftest import get_device_memory, get_sm_version from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) # @pytest.mark.skip_less_device(2) @pytest.mark.parametrize("num_beams", [1, 2, 4], ids=lambda num_beams: f'nb:{num_beams}') @pytest.mark.parametrize( "use_gpt_attention_plugin", [True, False], ids=["enable_attention_plugin", "disable_attention_plugin"]) @pytest.mark.parametrize("use_gemm_plugin", [True, False], ids=["enable_gemm_plugin", "disable_gemm_plugin"]) @pytest.mark.parametrize("context_fmha_type", [ "enable_context_fmha", "enable_context_fmha_fp32_acc", "disable_context_fmha" ]) @pytest.mark.parametrize("dtype", ['float16', 'bfloat16']) def test_llm_internlm2_7b_1node_1gpu(internlm2_example_root, llm_internlm2_7b_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, use_gpt_attention_plugin, use_gemm_plugin, context_fmha_type, dtype, num_beams): "Build & Run internlm2-7b with 1 gpu" if dtype == "bfloat16" and not use_gemm_plugin: pytest.skip("Please use gemm plugin when dtype is bfloat16.") if num_beams == 4 and get_device_memory() < 50000: pytest.skip("device memory is insufficient.") model_dir = convert_weights(llm_venv=llm_venv, example_root=f"{internlm2_example_root}", cmodel_dir=cmodel_dir, model="internlm2-7b", model_path=llm_internlm2_7b_model_root, data_type=dtype, gpus=1, tp_size=1) build_cmd = [ "python3 -m tensorrt_llm.commands.build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", f"--max_beam_width={num_beams}", f"--max_batch_size=1", ] if use_gpt_attention_plugin: build_cmd.append("--remove_input_padding=enable") build_cmd.append(f"--gpt_attention_plugin={dtype}") else: build_cmd.append("--gpt_attention_plugin=disable") build_cmd.append("--remove_input_padding=disable") build_cmd.append("--paged_kv_cache=disable") if use_gemm_plugin: build_cmd.append(f"--gemm_plugin={dtype}") else: build_cmd.append("--gemm_plugin=disable") if context_fmha_type == "enable_context_fmha": build_cmd.append("--context_fmha=enable") elif context_fmha_type == "disable_context_fmha": build_cmd.append("--context_fmha=disable") print("Building engines...") check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print('Run internlm2-7b...') data_type = "fp16" if dtype == "float16" else "bf16" summary_cmd = [ f"{internlm2_example_root}/../../../summarize.py", "--test_trt_llm", "--hf_model_dir", llm_internlm2_7b_model_root, "--engine_dir", engine_dir, "--data_type", data_type, "--check_accuracy", f"--num_beams={num_beams}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] if context_fmha_type == "enable_context_fmha_fp32_acc": summary_cmd.append("--enable_context_fmha_fp32_acc") venv_mpi_check_call( llm_venv, parse_mpi_cmd(["mpirun", "-n", "1", "--allow-run-as-root"]), summary_cmd)