# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module test_mistral test mistral examples.""" import multiprocessing import os import defs.ci_profiler import psutil import pytest from defs.common import (convert_weights, quantize_data, test_llm_torch_multi_lora_support, test_multi_lora_support, venv_check_call) from defs.conftest import (get_device_count, get_sm_version, skip_post_blackwell, skip_pre_ada) from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) def get_optimal_jobs(): cpu_count = multiprocessing.cpu_count() available_memory = psutil.virtual_memory().available / (1024 * 1024 * 1024) memory_per_job = 4 memory_based_jobs = int(available_memory / memory_per_job) system_load = psutil.getloadavg()[0] / cpu_count if system_load > 0.7: cpu_factor = 0.5 else: cpu_factor = 0.75 cpu_based_jobs = max(1, int(cpu_count * cpu_factor)) optimal_jobs = max(1, min(cpu_based_jobs, memory_based_jobs)) return optimal_jobs @skip_post_blackwell #nvbug 5298661 @pytest.mark.parametrize( "run_type", ['inference', 'summarization_long', 'chunked_summarization_long']) @pytest.mark.parametrize("max_attention_window", [4096], ids=['max_attention_window_size_4096']) @pytest.mark.parametrize("data_type", ['float16']) @pytest.mark.parametrize("llm_mistral_model_root", ['mistral-7b-v0.1'], indirect=True) def test_llm_mistral_v1_1gpu(run_type, data_type, llama_example_root, max_attention_window, llm_mistral_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir): print("Build engines...") if run_type == "summarization_long": model_name = 'mistral-{}'.format(run_type) model_dir = convert_weights(llm_venv=llm_venv, example_root=llama_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_mistral_model_root, data_type=data_type) build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", "--max_input_len", "6400", f"--max_batch_size={1}", "--max_seq_len", "6528", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", "--context_fmha=enable", "--use_paged_context_fmha=disable", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run long context summarize...") # using shorter input length since A30 doesn't have enough device memory. summary_cmd = [ f"{llama_example_root}/summarize_long.py", "--test_trt_llm", "--test_hf", "--hf_model_location", f"{llm_mistral_model_root}", "--data_type", "fp16", f"--engine_dir={engine_dir}", f"--max_attention_window_size={max_attention_window}", "--max_ite", "3", "--max_input_len", "6400", "--tensorrt_llm_rouge1_threshold", "90", "--check_accuracy", ] # https://nvbugs/4658787 # WAR before summarize_long.py can work offline env = {"HF_DATASETS_OFFLINE": "0"} venv_check_call(llm_venv, summary_cmd, env=env) # multi block + sliding window attention tests. build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", "--max_input_len", "6400", "--max_seq_len", "6528", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", "--use_paged_context_fmha=disable", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run long context summarize with multi_block_mode enabled...") # using shorter input length since A30 doesn't have enough device memory. summary_cmd = [ f"{llama_example_root}/summarize_long.py", "--test_trt_llm", "--test_hf", "--hf_model_location", f"{llm_mistral_model_root}", "--data_type", "fp16", f"--engine_dir={engine_dir}", f"--max_attention_window_size={max_attention_window}", "--max_ite", "3", "--max_input_len", "6400", "--tensorrt_llm_rouge1_threshold", "90", "--check_accuracy" ] venv_check_call(llm_venv, summary_cmd, env=env) elif run_type == "chunked_summarization_long": model_name = 'mistral-{}'.format(run_type) model_dir = convert_weights(llm_venv=llm_venv, example_root=llama_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=llm_mistral_model_root, data_type=data_type) build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", "--max_input_len", "6400", "--max_num_tokens=2048", "--use_paged_context_fmha=enable", f"--max_batch_size={1}", "--max_seq_len", "6528", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", "--context_fmha=enable", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run long context summarize...") summary_cmd = [ f"{llama_example_root}/../../../summarize.py", "--eval_task=summarize_long", "--test_trt_llm", "--test_hf", "--hf_model_dir", f"{llm_mistral_model_root}", "--data_type", "fp16", f"--engine_dir={engine_dir}", f"--max_attention_window_size={max_attention_window}", "--max_input_length", "6400", "--tensorrt_llm_rouge1_threshold", "21", "--check_accuracy", "--enable_chunked_context" ] # https://nvbugs/4658787 # WAR before summarize_long.py can work offline env = {"HF_DATASETS_OFFLINE": "0"} venv_check_call(llm_venv, summary_cmd, env=env) @skip_pre_ada @pytest.mark.parametrize("llm_mistral_model_root", ['komt-mistral-7b-v1'], indirect=True) @pytest.mark.parametrize("llm_lora_model_root", ['komt-mistral-7b-v1-lora'], indirect=True) def test_llm_mistral_lora_1gpu(llama_example_root, llm_mistral_model_root, llm_datasets_root, llm_venv, engine_dir, llm_lora_model_root, qcache_dir): "run mistral lora test on 1gpu" print("Quantization...") model_dir = quantize_data( llm_venv, llama_example_root, model_dir=llm_mistral_model_root, calib_dataset=f"{llm_datasets_root}/cnn_dailymail", dtype="float16", qformat="fp8", quantize_dir=qcache_dir, calib_size=512, kv_cache_dtype="fp8") print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", f"--lora_dir={llm_lora_model_root}", "--lora_plugin=auto", "--gemm_plugin=auto", "--max_batch_size=8", "--max_input_len=32256", "--max_seq_len=33280", "--use_paged_context_fmha=enable", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) input_text = "[INST]오늘은 날씨가 아주 좋다 내가 공원에 갔을 때 [/INST]" run_cmd = [ f"{llama_example_root}/../../../run.py", f"--input_text={input_text}", f"--tokenizer_dir={llm_mistral_model_root}", f"--engine_dir={engine_dir}", "--max_output_len=1024", "--max_attention_window_size=4096", "--lora_task_uids=0", "--temperature=0.8", "--top_p=0.8", "--top_k=100", "--random_seed=0", ] venv_check_call(llm_venv, run_cmd) @skip_pre_ada @pytest.mark.skip_less_device_memory(80000) @pytest.mark.parametrize("mistral_nemo_minitron_model_root", ['Mistral-NeMo-Minitron-8B-Instruct'], indirect=True) def test_mistral_nemo_minitron_fp8_with_bf16_lora( llama_example_root, mistral_nemo_minitron_model_root, llm_datasets_root, qcache_dir, llm_rouge_root, llm_venv, engine_dir, num_beams=1, ): "Run Mistral Nemo Minitron 8B with multiple pseudo LoRAs." # Quantize the base model to fp8. qmodel_dir = quantize_data( llm_venv, llama_example_root, model_dir=mistral_nemo_minitron_model_root, calib_dataset=f"{llm_datasets_root}/cnn_dailymail", dtype="bfloat16", qformat="fp8", quantize_dir=qcache_dir, calib_size=32, kv_cache_dtype="fp8") test_multi_lora_support( hf_model_dir=mistral_nemo_minitron_model_root, tllm_ckpt_dir=qmodel_dir, engine_dir=engine_dir, llm_venv=llm_venv, example_root=llama_example_root, num_loras=2, lora_rank=8, target_hf_modules=["q_proj", "k_proj", "v_proj"], target_trtllm_modules=["attn_q", "attn_k", "attn_v"], zero_lora_weights=True, ) @skip_pre_ada @pytest.mark.skip_less_device_memory(80000) @pytest.mark.parametrize("llm_mistral_model_root", [ 'mistral-7b-v0.1', 'mistral-nemo-instruct-2407', ], indirect=True) def test_mistral_with_bf16_lora_torch(llama_example_root, llm_datasets_root, qcache_dir_without_install_package, llm_venv, engine_dir, llm_mistral_model_root): """Run Mistral models with multiple dummy LoRAs using LLM-API Torch backend.""" if "mistral-nemo-instruct-2407" in llm_mistral_model_root.lower(): tensor_parallel_size = 2 if get_device_count() < 2: pytest.skip( "Skipping: mistral-nemo-instruct-2407 model requires 2 GPUs") else: tensor_parallel_size = 1 expected_outputs = { 'mistral-7b-v0.1': [ "I hope you’re doing well. I’m doing well. I’m doing well. I’m doing well. I’m doing", "\n\nSeattle, WA Weather Forecast. Today's weather in Seattle, WA. 59°F. 15°", "\n\nNo, it is not ok to fill diesel in a petrol car. Diesel is a heavier fuel than petrol and will", "\n\nYes, you can check the top 5 trending songs on Spotify. To do this, go to the Spotify website and sign", "\n\nParis is the capital of France.\n\nWhat is the capital of the United States?\n\nWashington, D.C." ], 'mistral-nemo-instruct-2407': [ " I'm doing fine, thanks for asking! How can I assist you today? Let me know if you have any questions or just want to chat!", " Seattle, WA is currently experiencing a temperature of 55°F (13°C) with a chance of rain. The weather is typically cloud", " I have a 2005 Honda City. I have filled diesel in my car by mistake. I have driven the car for about 1", " I'm using python and I've tried using the spotipy library but I can't seem to get it to work. I'm not sure if it", " Paris\n\nThe capital of France is Paris. It is the largest city in the country and is known for its iconic landmarks such as the Eiffel" ], } print(f"Testing {llm_mistral_model_root} with LLM-API Torch backend...") defs.ci_profiler.start("test_llm_torch_multi_lora_support") model_name = os.path.basename(llm_mistral_model_root).lower() test_llm_torch_multi_lora_support( hf_model_dir=llm_mistral_model_root, llm_venv=llm_venv, num_loras=2, lora_rank=8, target_hf_modules=["q_proj", "k_proj", "v_proj"], zero_lora_weights=True, tensor_parallel_size=tensor_parallel_size, expected_outputs=expected_outputs[model_name]) defs.ci_profiler.stop("test_llm_torch_multi_lora_support") print( f"test_llm_torch_multi_lora_support: {defs.ci_profiler.elapsed_time_in_sec('test_llm_torch_multi_lora_support')} sec" )