# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import os import pytest from defs.common import (convert_weights, generate_summary_cmd, quantize_data, venv_check_call, venv_mpi_check_call) from defs.conftest import (get_sm_version, llm_models_root, skip_post_blackwell, skip_pre_ada) from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) @skip_post_blackwell @pytest.mark.parametrize("model_name", ['mixtral-8x7b-v0.1-AWQ']) def test_llm_mixtral_int4_awq_1gpu_summary(llama_example_root, llm_datasets_root, model_name, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, qcache_dir_without_install_package): models_root = llm_models_root() model_dir = os.path.join(models_root, model_name) ckpt_dir = os.path.join(cmodel_dir, model_name) print("Convert checkpoint...") convert_cmd = [ f"{llama_example_root}/convert_checkpoint.py", "--model_dir", model_dir, "--output_dir", ckpt_dir, ] venv_check_call(llm_venv, convert_cmd) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run inference") summary_cmd = generate_summary_cmd(llama_example_root, hf_model_dir=model_dir, data_type="fp16", tensorrt_llm_rouge1_threshold=19.5, engine_dir=engine_dir, dataset_dir=llm_datasets_root, rouge_dir=llm_rouge_root) venv_check_call(llm_venv, summary_cmd) @pytest.mark.skip_less_device(8) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.parametrize("test_type", ['build', 'infer']) @pytest.mark.parametrize( "moe_tp_size", [1, 4, 8], ids=['expert_parallel', 'mixed_parallel', 'tensor_parallel']) @pytest.mark.parametrize("moe_renorm_mode", [0, 1], ids=['no_renormalize', 'renormalize']) @pytest.mark.parametrize("mode", [0, 1], ids=['plugin', 'ootb_except_mha']) @pytest.mark.parametrize("llm_mixtral_model_root", ['Mixtral-8x7B-v0.1', 'Mixtral-8x22B-v0.1'], indirect=True) def test_llm_mixtral_2nodes_8gpus(llama_example_root, llm_mixtral_model_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir, moe_tp_size, moe_renorm_mode, mode, test_type): "Run test on 2x8 gpus with moe_renorm_mode" data_type = "float16" tp_size, pp_size = 8, 2 world_size = tp_size * pp_size model_name = os.path.basename(llm_mixtral_model_root) engine_dir = os.path.join(llama_example_root, "engines", model_name, data_type, f"{world_size}-gpu", f"tp{tp_size}pp{pp_size}moe{moe_tp_size}", f"renorm_{moe_renorm_mode}", f"mode_{mode}") if test_type == "build": model_dir = convert_weights(llm_venv=llm_venv, example_root=llama_example_root, cmodel_dir=cmodel_dir, model="mixtral", model_path=llm_mixtral_model_root, tp_size=tp_size, moe_tp_size=moe_tp_size, moe_ep_size=tp_size // moe_tp_size, pp_size=pp_size, data_type=data_type, moe_renorm_mode=moe_renorm_mode) gemm_plugin = "disable" if mode == "ootb-except-mha" else data_type moe_plugin = "disable" if mode == "ootb-except-mha" else data_type print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", f"--gemm_plugin={gemm_plugin}", f"--moe_plugin={moe_plugin}", f"--workers={8}", "--max_input_len=1024", "--max_batch_size=1", "--context_fmha=enable", "--max_beam_width=4", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) if test_type == "infer": print("Run summarize...") summary_cmd = generate_summary_cmd(llama_example_root, hf_model_dir=llm_mixtral_model_root, data_type="fp16", num_beams=4, engine_dir=engine_dir, tensorrt_llm_rouge1_threshold=23, dataset_dir=llm_datasets_root, rouge_dir=llm_rouge_root) venv_check_call(llm_venv, summary_cmd) @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(45000) @pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"], indirect=True) @pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"], indirect=True) def test_llm_mixtral_moe_plugin_lora_4gpus( llama_example_root, llm_mixtral_model_root, llm_venv, cmodel_dir, engine_dir, llm_lora_model_root, ): "run Mixtral MoE lora test on 4 gpu." print("Build engines...") dtype = 'float16' model_name = os.path.basename(llm_mixtral_model_root) ckpt_dir = convert_weights(llm_venv=llm_venv, example_root=llama_example_root, cmodel_dir=cmodel_dir, model=model_name, tp_size=4, pp_size=1, model_path=llm_mixtral_model_root, data_type=dtype) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={ckpt_dir}", f"--output_dir={engine_dir}", "--lora_plugin=auto", "--moe_plugin=auto", f"--lora_dir={llm_lora_model_root}", "--worker=4", "--max_batch_size=8", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) ref_1 = [ 1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924, 29926, 28971, 29242, 28988 ] ref_2 = [ 1, 315, 2016, 285, 4284, 526, 5680, 28723, 28705, 28740, 28723, 661 ] input_text = "我爱吃蛋糕" print("Run inference with lora id 0...") run_cmd = [ f"{llama_example_root}/../../../run.py", "--max_output_len=5", f"--input_text={input_text}", "--lora_task_uids=0", f"--tokenizer_dir={llm_lora_model_root}", f"--engine_dir={engine_dir}", f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv", "--use_py_session", ] venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"], run_cmd) with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f: predict = csv.reader(f) predict = next(predict) predict = [int(p) for p in predict] assert ref_1 == predict print("Run inference with lora id -1...") input_text = "I love french quiche" run_cmd = [ f"{llama_example_root}/../../../run.py", "--max_output_len=5", f"--input_text={input_text}", "--lora_task_uids=-1", f"--tokenizer_dir={llm_lora_model_root}", f"--engine_dir={engine_dir}", f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv", "--use_py_session", ] venv_mpi_check_call(llm_venv, ["mpirun", "-n", "4", "--allow-run-as-root"], run_cmd) with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f: predict = csv.reader(f) predict = next(predict) predict = [int(p) for p in predict] assert ref_2 == predict @skip_pre_ada @pytest.mark.skip_less_device(4) @pytest.mark.skip_less_device_memory(80000) @pytest.mark.parametrize("llm_lora_model_root", ["chinese-mixtral-lora"], indirect=True) @pytest.mark.parametrize("llm_mixtral_model_root", ["Mixtral-8x7B-v0.1"], indirect=True) def test_llm_mixtral_moe_plugin_fp8_lora_4gpus( llama_example_root, llm_mixtral_model_root, llm_venv, qcache_dir, engine_dir, llm_lora_model_root, ): "run Mixtral MoE lora test on 4 gpu." print("Build engines...") dtype = 'float16' tp_size = 4 pp_size = 1 workers = tp_size * pp_size print("Quantizing engine...") model_dir = quantize_data(llm_venv, llama_example_root, model_dir=llm_mixtral_model_root, dtype=dtype, qformat="fp8", kv_cache_dtype="fp8", quantize_dir=qcache_dir, tp_size=tp_size, pp_size=pp_size) print("Build engines...") build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--workers={workers}", "--max_batch_size=8", f"--output_dir={engine_dir}", f"--lora_dir={llm_lora_model_root}", f"--lora_plugin={dtype}", f"--moe_plugin={dtype}", ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) ref_1 = [ 1, 28705, 29242, 30731, 31182, 235, 158, 142, 234, 182, 152, 28924, 29926, 28971, 29242, 28988 ] input_text = "我爱吃蛋糕" print("Run inference with lora id 0...") run_cmd = [ f"{llama_example_root}/../../../run.py", "--max_output_len=5", f"--input_text={input_text}", "--lora_task_uids=0", f"--tokenizer_dir={llm_lora_model_root}", f"--engine_dir={engine_dir}", f"--output_csv={llm_venv.get_working_directory()}/use_lora.csv", "--use_py_session", ] venv_mpi_check_call(llm_venv, ["mpirun", "-n", f"{workers}", "--allow-run-as-root"], run_cmd) with open(f"{llm_venv.get_working_directory()}/use_lora.csv") as f: predict = csv.reader(f) predict = next(predict) predict = [int(p) for p in predict] assert ref_1 == predict ref_2 = [ 1, 315, 2016, 285, 4284, 526, 5680, 28723, 315, 2016, 272, 1439, 469, 28725 ] print("Run inference with lora id -1...") input_text = "I love french quiche. I" run_cmd = [ f"{llama_example_root}/../../../run.py", "--max_output_len=5", f"--input_text={input_text}", "--lora_task_uids=-1", f"--tokenizer_dir={llm_lora_model_root}", f"--engine_dir={engine_dir}", f"--output_csv={llm_venv.get_working_directory()}/no_lora.csv", "--use_py_session", ] venv_mpi_check_call(llm_venv, ["mpirun", "-n", f"{workers}", "--allow-run-as-root"], run_cmd) with open(f"{llm_venv.get_working_directory()}/no_lora.csv") as f: predict = csv.reader(f) predict = next(predict) predict = [int(p) for p in predict] assert ref_2 == predict