# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv from copy import deepcopy import pytest from defs.common import convert_weights, venv_check_call from defs.conftest import get_sm_version, skip_post_blackwell from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) # TODO: remove skip after support NGram on B200 @skip_post_blackwell @pytest.mark.parametrize("batch_size", [1, 2], ids=['bs1', 'bs2']) @pytest.mark.parametrize("data_type", ['float16']) @pytest.mark.parametrize("max_draft_len", [4, 8], ids=['max_draft_len_4', 'max_draft_len_8']) @pytest.mark.parametrize( "max_matching_ngram_size", [2, 4], ids=['max_matching_ngram_size_2', 'max_matching_ngram_size_4']) @pytest.mark.parametrize("use_logits", [False, True], ids=['use_tokens', 'use_logits']) # useless yet @pytest.mark.parametrize("use_py_session", [False], ids=["use_cpp_session"]) @pytest.mark.parametrize("ngram_root", ["gpt2"], indirect=True) @pytest.mark.parametrize("streaming", [False, True], ids=["no_streaming", "streaming"]) def test_llm_ngram_1gpu(batch_size, data_type, max_draft_len, max_matching_ngram_size, use_logits, use_py_session, ngram_root, streaming, ngram_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, engine_dir): model_name = "ngram" print("Build checkpoint ...") model_dir = convert_weights(llm_venv=llm_venv, example_root=ngram_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=ngram_root, data_type=data_type) print("Build engines ...") target_engine_dir = engine_dir + "-target" baseline_engine_dir = engine_dir + "-baseline" common_build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--max_batch_size={batch_size}", f"--max_beam_width=1", "--max_input_len=1024", "--max_seq_len=1536", "--use_paged_context_fmha=enable", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", ] target_model_build_cmd = deepcopy(common_build_cmd) target_model_build_cmd.extend([ f"--output_dir={target_engine_dir}", "--speculative_decoding_mode=draft_tokens_external", f"--max_draft_len={max_draft_len+1}", ]) baseline_model_build_cmd = deepcopy(common_build_cmd) baseline_model_build_cmd.extend([ f"--output_dir={baseline_engine_dir}", ]) check_call(" ".join(target_model_build_cmd), shell=True, env=llm_venv._new_env) check_call(" ".join(baseline_model_build_cmd), shell=True, env=llm_venv._new_env) print("Run inferences ...") common_run_cmd = [ f"{ngram_example_root}/../run.py", f"--tokenizer_dir={ngram_root}", f"--max_output_len=64", f"--kv_cache_enable_block_reuse", f"--kv_cache_free_gpu_memory_fraction=0.25", ] if streaming: common_run_cmd.extend(["--streaming", "--streaming_interval=1"]) if batch_size == 1: common_run_cmd.extend(["--input_text", "'How are you?'"]) elif batch_size == 2: common_run_cmd.extend(["--input_text", "'Hello'", "'How are you?'"]) else: assert False, "Only batch_size <=2 is supported in test." assert not use_py_session, "Only CPP session is supported in Draft-Target-Model." run_cmd = deepcopy(common_run_cmd) ngram_config = f"[{max_draft_len},{max_matching_ngram_size},[0]]" run_cmd.extend([ f"--engine_dir={target_engine_dir}", f"--ngram_config={ngram_config}", f"--output_csv={engine_dir}/ngram_output.csv", ]) baseline_run_cmd = deepcopy(common_run_cmd) baseline_run_cmd.extend([ f"--engine_dir={baseline_engine_dir}", f"--output_csv={engine_dir}/baseline_output.csv", ]) venv_check_call(llm_venv, run_cmd) venv_check_call(llm_venv, baseline_run_cmd) print("Compare outputs ...") with open(f"{engine_dir}/ngram_output.csv") as dt_f, open( f"{engine_dir}/baseline_output.csv") as b_f: for bs, (dt_request, b_request) in enumerate(zip(csv.reader(dt_f), csv.reader(b_f))): assert ( len(dt_request) == len(b_request) ), f"Output length at ({bs=}) is different ({len(dt_request)} v.s. {len(b_request)})." for index, (dt, b) in enumerate(zip(dt_request, b_request)): assert ( int(dt) == int(b) ), f"Output at ({bs=}, {index=}) is different ({dt} v.s. {b})." if batch_size > 1 or streaming: # Summarize tests for only batch_size=1 and streaming=False. return print("Run summarize...") ngram_config = f"[{max_draft_len},{max_matching_ngram_size},[0]]" run_cmd = [ f"{ngram_example_root}/../summarize.py", "--test_hf", "--test_trt_llm", "--check_accuracy", "--batch_size=1", f"--hf_model_dir={ngram_root}", f"--engine_dir={target_engine_dir}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}", "--kv_cache_enable_block_reuse", f"--ngram_config={ngram_config}", "--tensorrt_llm_rouge1_threshold=20", f"--kv_cache_free_gpu_memory_fraction=0.25", ] venv_check_call(llm_venv, run_cmd)