# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from defs.common import convert_weights, venv_check_call from defs.conftest import get_sm_version, skip_post_blackwell from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) @skip_post_blackwell @pytest.mark.parametrize("batch_size", [8], ids=['bs8']) @pytest.mark.parametrize("redrafter_num_beams", [5, 8], ids=['nb5', 'nb8']) @pytest.mark.parametrize("redrafter_draft_len_per_beam", [5], ids=['dl5']) @pytest.mark.parametrize("data_type", ['bfloat16']) @pytest.mark.parametrize("redrafter_model_roots", ["redrafter-vicuna-7b-v1.3"], indirect=True) @pytest.mark.parametrize("use_py_session", [False, True], ids=["use_cpp_session", "use_py_session"]) def test_llm_redrafter_1gpu(batch_size, data_type, redrafter_model_roots, redrafter_num_beams, redrafter_draft_len_per_beam, redrafter_example_root, llama_example_root, llm_datasets_root, llm_rouge_root, llm_venv, cmodel_dir, cmodel_base_dir, engine_dir, use_py_session): print("Build engines...") model_name = "redrafter" base_model_name = "llama" base_example_root = llama_example_root base_model_dir = convert_weights(llm_venv=llm_venv, example_root=base_example_root, cmodel_dir=cmodel_base_dir, model=base_model_name, model_path=redrafter_model_roots[0], data_type=data_type) redrafter_convert_roots = (base_model_dir, redrafter_model_roots[1]) model_dir = convert_weights( llm_venv=llm_venv, example_root=redrafter_example_root, cmodel_dir=cmodel_dir, model=model_name, model_path=redrafter_convert_roots, data_type=data_type, redrafter_num_beams=redrafter_num_beams, redrafter_draft_len_per_beam=redrafter_draft_len_per_beam) build_cmd = [ "trtllm-build", f"--checkpoint_dir={model_dir}", f"--output_dir={engine_dir}", f"--gpt_attention_plugin={data_type}", f"--gemm_plugin={data_type}", f"--max_beam_width=1", "--remove_input_padding=enable", "--context_fmha=enable", "--max_input_len=1024", "--max_seq_len=1536", f"--max_batch_size={batch_size}", "--kv_cache_type=paged", '--speculative_decoding_mode=explicit_draft_tokens', ] check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) print("Run summarize...") summary_cmd = [ f"{redrafter_example_root}/../summarize.py", "--test_trt_llm", "--hf_model_dir", f"{redrafter_model_roots[0]}", "--tokenizer_dir", f"{redrafter_model_roots[0]}", f"--engine_dir={engine_dir}", "--check_accuracy", "--tensorrt_llm_rouge1_threshold=24", f"--temperature=1.0", f"--max_ite=40", f"--batch_size={batch_size}", f"--dataset_dir={llm_datasets_root}", f"--rouge_dir={llm_rouge_root}" ] if use_py_session: summary_cmd.append("--use_py_session") venv_check_call(llm_venv, summary_cmd)