# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from defs.common import convert_weights, venv_check_call from defs.conftest import get_sm_version, skip_post_blackwell from defs.trt_test_alternative import check_call # skip trt flow cases on post-Blackwell-Ultra if get_sm_version() >= 103: pytest.skip( "TRT workflow tests are not supported on post Blackwell-Ultra architecture", allow_module_level=True) @skip_post_blackwell @pytest.mark.parametrize("use_cpp_runtime", [True, False], ids=["use_cpp_runtime", "use_python_runtime"]) @pytest.mark.parametrize("num_beams", [1, 4], ids=lambda num_beams: f'nb:{num_beams}') @pytest.mark.parametrize("data_type", ['float16']) @pytest.mark.parametrize("weight_only_precision", [ 'disable_weight_only', pytest.param('int8', marks=skip_post_blackwell), pytest.param('int4', marks=skip_post_blackwell) ]) @pytest.mark.parametrize( "use_attention_plugin", [True, False], ids=["enable_attention_plugin", "disable_attention_plugin"]) @pytest.mark.parametrize("use_gemm_plugin", [True, False], ids=["enable_gemm_plugin", "disable_gemm_plugin"]) @pytest.mark.parametrize("whisper_model_root", ['large-v3', 'large-v2'], indirect=True) def test_llm_whisper_general(llm_venv, engine_dir, data_type, weight_only_precision, use_attention_plugin, use_gemm_plugin, whisper_example_root, whisper_model_root, num_beams, use_cpp_runtime, whisper_example_audio_file, llm_datasets_root): print("Locate model checkpoints in test storage...") tllm_model_name, model_ckpt_dir = whisper_model_root if any((not use_attention_plugin, use_gemm_plugin, 'v3' not in tllm_model_name)) and use_cpp_runtime: pytest.skip(f"Plugins might not support C++ runtime. Skip the test...") whisper_engine_dir = f"{engine_dir}/{tllm_model_name}/{data_type}_{weight_only_precision}" if 'int' in weight_only_precision: use_weight_only = True else: use_weight_only = False weight_only_precision = None converted_weight_dir = convert_weights( llm_venv=llm_venv, example_root=whisper_example_root, cmodel_dir=whisper_engine_dir, model=tllm_model_name, model_path=model_ckpt_dir, use_weight_only=use_weight_only, weight_only_precision=weight_only_precision) print("Build engines...") for component in ["encoder", "decoder"]: build_cmd = [ "trtllm-build", f"--checkpoint_dir={converted_weight_dir}/{component}", f"--output_dir={whisper_engine_dir}/{component}", "--paged_kv_cache=disable", "--moe_plugin=disable", "--max_batch_size=8", ] if use_cpp_runtime: build_cmd.extend( ("--paged_kv_cache enable", "--remove_input_padding enable")) else: build_cmd.append("--remove_input_padding=disable") if component == "encoder": build_cmd.append( f"--max_input_len=3000" ) # check against actual encoder features length (3000,...) in C++ runtime build_cmd.append(f"--max_seq_len=3000") if component == "decoder": build_cmd.append(f"--max_input_len=14") build_cmd.append(f"--max_seq_len=114") build_cmd.append(f"--max_encoder_input_len=3000") build_cmd.append(f"--max_beam_width={num_beams}") if use_gemm_plugin: build_cmd.append(f"--gemm_plugin={data_type}") else: build_cmd.append(f"--gemm_plugin=disable") if use_attention_plugin: build_cmd.append(f"--bert_attention_plugin={data_type}") build_cmd.append(f"--gpt_attention_plugin={data_type}") else: build_cmd.append(f"--bert_attention_plugin=disable") build_cmd.append(f"--gpt_attention_plugin=disable") check_call(" ".join(build_cmd), shell=True, env=llm_venv._new_env) if use_cpp_runtime: print("Run inference using Python bindings of C++ runtime...") run_cmd = [ f'{whisper_example_root}/../../../run.py', f'--multimodal_input_file={whisper_example_audio_file}', f'--engine_dir={whisper_engine_dir}', f'--max_output_len=96', ] else: print("Run inference using Whisper's custom Python runtime...") run_cmd = [ f"{whisper_example_root}/run.py", f"--dataset={llm_datasets_root}/hf-internal-testing/librispeech_asr_dummy", f"--engine_dir={whisper_engine_dir}", f"--assets_dir={model_ckpt_dir}", f"--num_beams={num_beams}", f"--dtype={data_type}", f"--use_py_session", f"--accuracy_check", ] # https://nvbugs/4658787 # WAR before whisper tests can work offline env = {"HF_DATASETS_OFFLINE": "0"} venv_check_call(llm_venv, run_cmd, env=env)