import pytest import torch from tensorrt_llm._torch.pyexecutor.py_executor_creator import \ create_py_executor from tensorrt_llm.llmapi import (BuildConfig, CapacitySchedulerPolicy, DynamicBatchConfig, SchedulerConfig) from tensorrt_llm.llmapi.llm_args import (CudaGraphConfig, KvCacheConfig, TorchLlmArgs) # isort: off from .test_llm import get_model_path # isort: on pytestmark = pytest.mark.threadleak(enabled=False) def test_profile_kvcache(): kv_cache_config = KvCacheConfig(enable_block_reuse=False, free_gpu_memory_fraction=0.9) cuda_graph_config = CudaGraphConfig(max_batch_size=512) VLM_MODEL = "Qwen2.5-VL-7B-Instruct" VLM_MODEL_PATH = get_model_path(VLM_MODEL) build_config = BuildConfig(max_beam_width=1, max_num_tokens=16384) dynamic_batch_config = DynamicBatchConfig( enable_batch_size_tuning=True, enable_max_num_tokens_tuning=False, dynamic_batch_moving_average_window=128) scheduler_config = SchedulerConfig( capacity_scheduler_policy=CapacitySchedulerPolicy.GUARANTEED_NO_EVICT, dynamic_batch_config=dynamic_batch_config, ) backend = "pytorch" llm_args = { "model": VLM_MODEL, "scheduler_config": scheduler_config, "tokenizer": None, "tensor_parallel_size": 1, "pipeline_parallel_size": 1, "moe_expert_parallel_size": None, "gpus_per_node": 1, "trust_remote_code": False, "build_config": build_config, "max_batch_size": build_config.max_batch_size, "max_num_tokens": build_config.max_num_tokens, "max_beam_width": build_config.max_beam_width, "max_seq_len": build_config.max_seq_len, "kv_cache_config": kv_cache_config, "backend": backend, "num_postprocess_workers": 0, "postprocess_tokenizer_dir": VLM_MODEL, "reasoning_parser": None, "fail_fast_on_attention_window_too_large": False, "cuda_graph_config": cuda_graph_config, } torchllm_args = TorchLlmArgs(**llm_args) profiling_data = {"enable_mm_reqs": True} py_executor = create_py_executor(llm_args=torchllm_args, checkpoint_dir=VLM_MODEL_PATH, profiling_stage_data=profiling_data) vlm_activation_bytes_with_mm_reqs = profiling_data["activation_bytes"] py_executor.shutdown() torch.cuda.empty_cache() profiling_data = {"enable_mm_reqs": False} torchllm_args = TorchLlmArgs(**llm_args) py_executor_2 = create_py_executor(llm_args=torchllm_args, checkpoint_dir=VLM_MODEL_PATH, profiling_stage_data=profiling_data) vlm_activation_bytes_no_mm_reqs = profiling_data["activation_bytes"] py_executor_2.shutdown() torch.cuda.empty_cache() assert vlm_activation_bytes_with_mm_reqs > vlm_activation_bytes_no_mm_reqs, f"Activation bytes should be higher with mm reqs, but got {vlm_activation_bytes_with_mm_reqs} for mm reqs and {vlm_activation_bytes_no_mm_reqs} without mm reqs"