/* * SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/opUtils.h" #include "tensorrt_llm/runtime/torchUtils.h" #include "tensorrt_llm/kernels/noAuxTcKernels.h" // #include // #include // #include // #include // #include // #include // #include namespace th = torch; namespace tl = tensorrt_llm; namespace tk = tensorrt_llm::kernels; namespace torch_ext { th::Tensor noaux_tc_op(th::Tensor const& scores, th::Tensor const& scores_with_bias, int64_t n_group, int64_t topk_group, int64_t topk, double routed_scaling_factor) { auto data_type = scores_with_bias.scalar_type(); auto input_size = scores_with_bias.sizes(); int64_t num_tokens = input_size[0]; int64_t num_experts = input_size[1]; TORCH_CHECK(input_size.size() == 2, "scores_with_bias must be a 2D Tensor"); TORCH_CHECK(num_experts % n_group == 0, "num_experts should be divisible by n_group"); TORCH_CHECK(n_group < 32, "n_group should be smaller than 32 for now"); //@todo: remove this restriction later TORCH_CHECK(topk < 32, "topk should be smaller than 32 for now"); //@todo: remove this restriction later th::Tensor group_scores = th::empty({num_tokens, n_group}, th::dtype(data_type).device(torch::kCUDA)); auto stream = at::cuda::getCurrentCUDAStream(scores_with_bias.get_device()); switch (data_type) { case torch::kFloat16: // Handle Float16 tk::invokeNoAuxTc(reinterpret_cast(scores.mutable_data_ptr()), reinterpret_cast(group_scores.mutable_data_ptr()), reinterpret_cast(scores_with_bias.data_ptr()), num_tokens, num_experts, n_group, topk_group, topk, routed_scaling_factor, stream); break; case torch::kFloat32: // Handle Float32 tk::invokeNoAuxTc(reinterpret_cast(scores.mutable_data_ptr()), reinterpret_cast(group_scores.mutable_data_ptr()), reinterpret_cast(scores_with_bias.data_ptr()), num_tokens, num_experts, n_group, topk_group, topk, routed_scaling_factor, stream); break; case torch::kBFloat16: // Handle BFloat16 tk::invokeNoAuxTc<__nv_bfloat16>(reinterpret_cast<__nv_bfloat16*>(scores.mutable_data_ptr()), reinterpret_cast<__nv_bfloat16*>(group_scores.mutable_data_ptr()), reinterpret_cast<__nv_bfloat16*>(scores_with_bias.data_ptr()), num_tokens, num_experts, n_group, topk_group, topk, routed_scaling_factor, stream); break; default: // Handle other data types throw std::invalid_argument("Invalid dtype, only supports float16, float32, and bfloat16"); break; } return scores; } } // end namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.def( "noaux_tc_op(Tensor scores, Tensor scores_with_bias, int n_group, int topk_group, int topk, float " "routed_scaling_factor) -> Tensor"); } TORCH_LIBRARY_IMPL(trtllm, CUDA, m) { m.impl("noaux_tc_op", &torch_ext::noaux_tc_op); }