#!/usr/bin/env python3 # SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse as _arg from pathlib import Path import run from build_engines_utils import init_model_spec_module init_model_spec_module() import os import model_spec import tensorrt_llm.bindings as _tb def generate_output(engine: str, num_beams: int, model_spec_obj: model_spec.ModelSpec, max_output_len: int = 4): tp_size = 1 pp_size = 1 cp_size = 1 model = 'gpt-j-6b' resources_dir = Path(__file__).parent.resolve().parent models_dir = resources_dir / 'models' hf_dir = models_dir / model tp_pp_cp_dir = 'tp' + str(tp_size) + '-pp' + str(pp_size) + '-cp' + str( cp_size) + '-gpu/' engine_dir = models_dir / 'rt_engine' / model / engine / tp_pp_cp_dir data_dir = resources_dir / 'data' input_file = data_dir / 'input_tokens.npy' model_data_dir = data_dir / model if num_beams <= 1: output_dir = model_data_dir / 'sampling' else: output_dir = model_data_dir / ('beam_search_' + str(num_beams)) base_output_name = os.path.splitext(model_spec_obj.get_results_file())[0] args = run.parse_arguments([ '--engine_dir', str(engine_dir), '--input_file', str(input_file), '--tokenizer_dir', str(hf_dir), '--output_npy', str(output_dir / (base_output_name + '.npy')), '--output_csv', str(output_dir / (base_output_name + '.csv')), '--max_output_len', str(max_output_len), '--num_beams', str(num_beams), '--use_py_session' ]) run.main(args) def generate_outputs(only_fp8, num_beams): input_file = 'input_tokens.npy' if only_fp8 and num_beams == 1: model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.FP8) model_spec_obj.use_gpt_plugin() model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED) model_spec_obj.use_packed_input() print('Generating GPT-J FP8-kv-cache outputs') generate_output(engine=model_spec_obj.get_model_path(), num_beams=num_beams, model_spec_obj=model_spec_obj) elif not only_fp8: print('Generating GPT-J FP16 outputs') model_spec_obj = model_spec.ModelSpec(input_file, _tb.DataType.HALF) model_spec_obj.use_gpt_plugin() model_spec_obj.set_kv_cache_type(_tb.KVCacheType.CONTINUOUS) generate_output(engine=model_spec_obj.get_model_path(), num_beams=num_beams, model_spec_obj=model_spec_obj) model_spec_obj.use_packed_input() generate_output(engine=model_spec_obj.get_model_path(), num_beams=num_beams, model_spec_obj=model_spec_obj) model_spec_obj.set_kv_cache_type(_tb.KVCacheType.PAGED) generate_output(engine=model_spec_obj.get_model_path(), num_beams=num_beams, model_spec_obj=model_spec_obj) if __name__ == '__main__': parser = _arg.ArgumentParser() parser.add_argument( "--only_fp8", action="store_true", help="Generate data for only FP8 tests. Implemented for H100 runners.") generate_outputs(**vars(parser.parse_args()), num_beams=1) generate_outputs(**vars(parser.parse_args()), num_beams=2)