# TRT-LLM with PyTorch Run the quick start script: ```bash python3 quickstart.py ``` Run the advanced usage example script: ```bash # BF16 python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct # FP8 python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 # BF16 + TP=2 python3 quickstart_advanced.py --model_dir meta-llama/Llama-3.1-8B-Instruct --tp_size 2 # FP8 + TP=2 python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --tp_size 2 # FP8(e4m3) kvcache python3 quickstart_advanced.py --model_dir nvidia/Llama-3.1-8B-Instruct-FP8 --kv_cache_dtype fp8 ``` Run the multimodal example script: ```bash # default inputs python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B # user inputs python3 quickstart_multimodal.py --model_dir Efficient-Large-Model/NVILA-8B --prompt "Describe the scene" "What do you see in the image?" --data "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/seashore.png" "https://huggingface.co/datasets/Sayali9141/traffic_signal_images/resolve/main/61.jpg" --max_tokens 64 ```