/* * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/batch_manager/common.h" #include "tensorrt_llm/runtime/bufferManager.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/modelConfig.h" #include "tensorrt_llm/runtime/tllmRuntime.h" #include "tensorrt_llm/runtime/worldConfig.h" namespace tensorrt_llm::batch_manager { class EncoderBuffers { public: using SizeType32 = tensorrt_llm::runtime::SizeType32; using ITensor = tensorrt_llm::runtime::ITensor; using TensorPtr = runtime::ITensor::SharedPtr; using TensorMap = runtime::StringPtrMap; using ModelConfig = runtime::ModelConfig; using WorldConfig = runtime::WorldConfig; using TllmRuntime = runtime::TllmRuntime; TensorPtr inputIds; TensorPtr positionIds = nullptr; TensorPtr tokenTypeIds = nullptr; TensorPtr inputLengths; // [numEncoderRequests] TensorPtr maxInputLength; // [maxInputLengthInBatch] // intermediate states in pipeline parallelism TensorPtr hiddenStates; // [numTokens, hiddenSize] // features for multimodal encoders (audio, image, etc.) TensorPtr inputFeatures; // [totalNumOfFeatures, featureDim] if remove_padding else [batchSize, featureDim, featureLength] // language adapter routing information for encoders if language adapter is presented. TensorPtr languageAdapterRoutings; // [numTokens, numLanguages] // encoder output TensorPtr encoderOutput; // [numEncoderTokens, hiddenSize] // output buffer owned by llmRequest, such that it's per-request output buffer // encoderBuffers class can init and reshape each buffer, without maintaining a list/set of inflight buffers // TODO in progress: to support BS>1 encoder, need (1) internal scratch space tensors to save the contiguous // batched output (2) copy from CONTIGUOUS scratch tensor to individual request's DISCRETE output tensor after // execution To standardize the implementation, for both BS=1 and BS>1, we use internal buffer to store BS=1/BS>1 // results, and copy to request's external buffers. For BS=1, this introduces a redundancy copy, but ok for now. EncoderBuffers() = default; EncoderBuffers(SizeType32 maxBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime); std::pair prepareIO(RequestVector const& requests, ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime); void rearrangeOutputs(RequestVector const& requests, ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime); //! @brief set shape of individual request's encoder output (Ptuning embedding table if multimodal) void updateReqOutputShape(RequestVector const& requests, TllmRuntime const& runtime, WorldConfig const& worldConfig, ModelConfig const& modelConfig); private: SizeType32 numRequests{}; SizeType32 encoderInputLen{}; SizeType32 encoderOutputLen{}; SizeType32 maxInputLengthInBatch{}; // max input length in a batch // prefilled with deterministic values to avoid runtime creation std::vector positionIdsReserved; std::vector tokenTypeIdsReserved; // engine I/O TensorMap inputMap; TensorMap outputMap; void init(SizeType32 maxBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime); //! @brief pre-allocate max buffer sizes during init void initBufferSizes(SizeType32 maxBatchSize, ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime); //! @brief update actual buffer usage of requests during runtime void updateBufferSizes(RequestVector const& requests, ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime); void reshape(TllmRuntime const& runtime, ModelConfig const& modelConfig, WorldConfig const& worldConfig); void setFromInputs(RequestVector const& requests, ModelConfig const& modelConfig, WorldConfig const& worldConfig, TllmRuntime const& runtime); void fillIOMaps(ModelConfig const& modelConfig, WorldConfig const& worldConfig); // additional members that are Encoder-Decoder specific private: TensorPtr encoderOutputReserved; // [1, hiddenSize], dummy tensor for gen phase TensorPtr crossKvCacheGen; // [1] SizeType32 hiddenSize; // full hidden size (after multiplying tensor parallelism) public: void create(SizeType32 maxBatchSize, ModelConfig const& modelConfig, TllmRuntime const& runtime); SizeType32 getMaxInputLengthInBatch() const { return maxInputLengthInBatch; }; void setMaxBufferSizes(SizeType32 maxBatchSize, runtime::ModelConfig const& modelConfig); void setBufferSizes(RequestVector const& contextRequests, RequestVector const& genRequests); void reshape(); void fill( RequestVector const& ctxRequests, RequestVector const& genRequests, runtime::BufferManager const& manager); void insertInputTensors(TensorMap& inputMap); }; } // namespace tensorrt_llm::batch_manager