# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Iterable, List, Optional, Union import click import datasets import evaluate from .._torch import LLM as PyTorchLLM from ..llmapi import LLM, RequestOutput from ..logger import logger from ..sampling_params import SamplingParams from .interface import Evaluator class CnnDailymail(Evaluator): def __init__(self, dataset_path: str = "ccdv/cnn_dailymail", num_samples: int = None, random_seed: int = 0, rouge_path: str = "rouge", apply_chat_template: bool = False, system_prompt: Optional[str] = None): super().__init__(apply_chat_template=apply_chat_template, system_prompt=system_prompt) self.data = datasets.load_dataset(dataset_path, "3.0.0", split="test") self.data = self.data.shuffle(random_seed) if num_samples is None: self.num_samples = self.data.num_rows else: self.num_samples = min(num_samples, self.data.num_rows) self.rouge = evaluate.load(rouge_path) def generate_samples(self) -> Iterable[tuple]: for i, sample in enumerate(self.data): if i >= self.num_samples: break prompt = sample["article"] + " TL;DR:" prompt = prompt.strip().replace(" n't", "n't") yield prompt, sample["highlights"] def compute_score(self, outputs: List[RequestOutput], references: List[str]) -> float: for beam_idx in range(len(outputs[0].outputs)): metrics = self.rouge.compute( predictions=[output.outputs[0].text for output in outputs], references=references) logger.info(f"Beam {beam_idx} rouge scores:") for key in metrics.keys(): logger.info(f"\t{key}: {metrics[key]*100:.3f}") if beam_idx == 0: rouge1 = metrics["rouge1"] * 100 return rouge1 @click.command("cnn_dailymail") @click.option("--dataset_path", type=str, default="ccdv/cnn_dailymail") @click.option("--num_samples", type=int, default=None) @click.option("--random_seed", type=int, default=0) @click.option("--rouge_path", type=str, default="rouge") @click.option("--max_input_length", type=int, default=924) @click.option("--max_output_length", type=int, default=100) @click.option("--check_accuracy", is_flag=True, default=False) @click.option("--accuracy_threshold", type=float, default=15) @click.pass_context @staticmethod def command(ctx, dataset_path: str, num_samples: int, random_seed: int, rouge_path: str, max_input_length: int, max_output_length: int, check_accuracy: bool, accuracy_threshold: float) -> None: llm: Union[LLM, PyTorchLLM] = ctx.obj sampling_params = SamplingParams( max_tokens=max_output_length, truncate_prompt_tokens=max_input_length) evaluator = CnnDailymail(dataset_path, num_samples=num_samples, random_seed=random_seed, rouge_path=rouge_path) accuracy = evaluator.evaluate(llm, sampling_params) llm.shutdown() if check_accuracy: assert accuracy >= accuracy_threshold, f"Expected accuracy >= {accuracy_threshold}, but got {accuracy}"