/* * SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include namespace tensorrt_llm::common { // XQA kernels (optimized kernels for generation phase). bool forceXQAKernels(); // max number of CTAs for each KV head, multiple CTAs for one KV head is multi-block mode. // this number defines the maximum number when reaches both max_batch_size and max_beam_width. // If batch_size or beam_width doesn't reach maximum value, it is possible to have more CTAs per KV head than this // value. int32_t xqaMaxNbCtaPerKVHeadFactor(); std::optional envXqaNbCtaPerKVHead(); // Whether XQA JIT is disabled. bool getEnvDisableXQAJIT(); // Tune the number of blocks per sequence for accuracy/performance purpose. bool getEnvMmhaMultiblockDebug(); int getEnvMmhaBlocksPerSequence(); int getEnvMmhaKernelBlockSize(); } // namespace tensorrt_llm::common