/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/runtime/rnnStateBuffers.h" #include "tensorrt_llm/runtime/runtimeBuffers.h" #include "tensorrt_llm/runtime/utils/sessionUtils.h" using namespace tensorrt_llm::runtime; namespace tc = tensorrt_llm::common; RnnStateBuffers::RnnStateBuffers() { rnnStates = nullptr; convStates = nullptr; convStatesAlt = nullptr; slotMappingHost = nullptr; slotMappingDevice = nullptr; rnnStatePtrs = nullptr; convStatePtrs = nullptr; } RnnStateBuffers::RnnStateBuffers( TllmRuntime const& runtime, runtime::ModelConfig const& modelConfig, runtime::WorldConfig const& worldConfig) { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); TLLM_CHECK(modelConfig.isRnnBased()); TLLM_CHECK_WITH_INFO(modelConfig.hasRnnConfig(), "RNN only support Mamba now."); auto maxBatchSize = modelConfig.getMaxBatchSize(); auto maxBeamWidth = modelConfig.getMaxBeamWidth(); auto maxBatchBeam = maxBatchSize * maxBeamWidth; auto rnnConfig = modelConfig.getRnnConfig(); TLLM_CHECK_WITH_INFO(rnnConfig.has_value(), "RnnStateBuffers should be used with rnnConfig."); mConvKernel = rnnConfig->convKernel; mStateSize = rnnConfig->stateSize; mRnnHiddenSize = rnnConfig->rnnHiddenSize; auto dType = modelConfig.getDataType(); auto const localNbLayers = modelConfig.getNbRnnLayers(worldConfig.getPipelineParallelism()); mLocalNbLayers = localNbLayers; mMaxBeamWidth = maxBeamWidth; mUseMambaConv1dPlugin = modelConfig.useMambaConv1dPlugin(); auto rnnStatesShape = ITensor::makeShape({localNbLayers * maxBatchBeam, mStateSize, mRnnHiddenSize}); auto const convStatesShape = [&]() { if (mUseMambaConv1dPlugin) { return tensorrt_llm::runtime::ITensor::makeShape( {localNbLayers * maxBatchBeam, mConvKernel - 1, mRnnHiddenSize}); } else { return tensorrt_llm::runtime::ITensor::makeShape( {localNbLayers * maxBatchBeam, mRnnHiddenSize, mConvKernel - 1}); } }(); auto& bufferManager = runtime.getBufferManager(); auto const isRecurrentGemma = modelConfig.getModelVariant() == ModelConfig::ModelVariant::kRecurrentGemma; auto stateDType = isRecurrentGemma ? nvinfer1::DataType::kFLOAT : dType; rnnStates = bufferManager.gpu(rnnStatesShape, stateDType); convStates = bufferManager.gpu(convStatesShape, dType); convStatesAlt = bufferManager.gpu(convStatesShape, dType); if (modelConfig.usePagedState()) { auto slotMappingShape = ITensor::makeShape({maxBatchSize}); auto statePtrsShape = ITensor::makeShape({localNbLayers}); slotMappingDevice = bufferManager.gpu(slotMappingShape, nvinfer1::DataType::kINT32); slotMappingHost = BufferManager::cpu(slotMappingShape, nvinfer1::DataType::kINT32); rnnStatePtrs = BufferManager::cpu(statePtrsShape, nvinfer1::DataType::kINT64); convStatePtrs = BufferManager::cpu(statePtrsShape, nvinfer1::DataType::kINT64); } else { slotMappingHost = nullptr; slotMappingDevice = nullptr; rnnStatePtrs = nullptr; convStatePtrs = nullptr; } reshape(maxBatchSize); TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); } void RnnStateBuffers::reshape(SizeType32 batchSize) { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); auto rnnStatesShape = ITensor::makeShape({mLocalNbLayers * batchSize * mMaxBeamWidth, mStateSize, mRnnHiddenSize}); auto const convStatesShape = [&]() { if (mUseMambaConv1dPlugin) { return tensorrt_llm::runtime::ITensor::makeShape( {mLocalNbLayers * batchSize * mMaxBeamWidth, mConvKernel - 1, mRnnHiddenSize}); } else { return tensorrt_llm::runtime::ITensor::makeShape( {mLocalNbLayers * batchSize * mMaxBeamWidth, mRnnHiddenSize, mConvKernel - 1}); } }(); rnnStates->reshape(rnnStatesShape); convStates->reshape(convStatesShape); convStatesAlt->reshape(convStatesShape); rnnState.resize(mLocalNbLayers); convState.resize(mLocalNbLayers); convStateAlt.resize(mLocalNbLayers); for (int i = 0; i < mLocalNbLayers; i++) { size_t offset = batchSize * mMaxBeamWidth * i; rnnState[i] = tensorrt_llm::runtime::ITensor::slice(rnnStates, offset, batchSize * mMaxBeamWidth); convState[i] = tensorrt_llm::runtime::ITensor::slice(convStates, offset, batchSize * mMaxBeamWidth); convStateAlt[i] = tensorrt_llm::runtime::ITensor::slice(convStatesAlt, offset, batchSize * mMaxBeamWidth); } if (slotMappingDevice != nullptr) { TLLM_CHECK(slotMappingHost != nullptr); TLLM_CHECK(rnnStates != nullptr && convStates != nullptr); TLLM_CHECK(rnnStatePtrs != nullptr && convStatePtrs != nullptr); auto slotMappingShape = ITensor::makeShape({batchSize}); slotMappingDevice->reshape(slotMappingShape); slotMappingHost->reshape(slotMappingShape); int* slotMapping = static_cast(slotMappingHost->data()); for (int b = 0; b < batchSize; b++) { slotMapping[b] = b; } fillStatePtrs(); } TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); } void RnnStateBuffers::fillStatePtrs() { auto statePtrsShape = ITensor::makeShape({mLocalNbLayers}); rnnStatePtrs->reshape(statePtrsShape); convStatePtrs->reshape(statePtrsShape); rnnStatePtr.resize(mLocalNbLayers); convStatePtr.resize(mLocalNbLayers); void** rnnStatePtrArray = static_cast(rnnStatePtrs->data()); void** convStatePtrArray = static_cast(convStatePtrs->data()); for (int i = 0; i < mLocalNbLayers; i++) { rnnStatePtrArray[i] = rnnState[i]->data(); convStatePtrArray[i] = convState[i]->data(); rnnStatePtr[i] = tensorrt_llm::runtime::ITensor::slice(rnnStatePtrs, i, 1); convStatePtr[i] = tensorrt_llm::runtime::ITensor::slice(convStatePtrs, i, 1); } } void RnnStateBuffers::reshape( GenerationConfig const& generationConfig, ModelConfig const& modelConfig, WorldConfig const& worldConfig) { auto const batchSize = generationConfig.batchSize; reshape(batchSize); } void RnnStateBuffers::reset(BufferManager& manager) { // This is not need in Plugin path, but may be needed for OOTB path. manager.setZero(*rnnStates); manager.setZero(*convStates); manager.setZero(*convStatesAlt); } RnnStateBuffers RnnStateBuffers::sliceTo(SizeType32 offset, SizeType32 size) { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); RnnStateBuffers buffers; buffers.rnnState = utils::sliceBufferVector(rnnState, offset, size); buffers.convState = utils::sliceBufferVector(convState, offset, size); buffers.convStateAlt = utils::sliceBufferVector(convStateAlt, offset, size); if (slotMappingDevice != nullptr) { TLLM_CHECK(slotMappingHost != nullptr); TLLM_CHECK(rnnStates != nullptr && convStates != nullptr); TLLM_CHECK(rnnStatePtrs != nullptr && convStatePtrs != nullptr); buffers.slotMappingHost = ITensor::slice(slotMappingHost, offset, size); buffers.slotMappingDevice = ITensor::slice(slotMappingHost, offset, size); int* slotMapping = static_cast(buffers.slotMappingHost->data()); for (int b = 0; b < size; b++) { slotMapping[b] = b; } buffers.fillStatePtrs(); } TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); return buffers; } void RnnStateBuffers::prepareContextStep(RuntimeBuffers* runtimeBuffers, BufferManager& manager) { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); SizeType32 const batchSize = runtimeBuffers->generationConfig.batchSize; auto& requestTypes = runtimeBuffers->requestTypes; auto RequestTypesPtr = bufferCast(*requestTypes); TLLM_CHECK(requestTypes->getSize() == static_cast(batchSize)); std::fill_n(RequestTypesPtr, batchSize, 0); manager.setZero(*convStates); if (slotMappingDevice != nullptr) { manager.copy(*slotMappingHost, *slotMappingDevice); } TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); } void RnnStateBuffers::tile(RuntimeBuffers* runtimeBuffers, BufferManager& manager, ModelConfig const& modelConfig, WorldConfig const& worldConfig) { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); TLLM_CHECK_WITH_INFO(false, "Beam search for mamba is not supported now."); auto& generationConfig = runtimeBuffers->generationConfig; auto& logits = runtimeBuffers->logits; auto& contextLengthsDevice = runtimeBuffers->contextLengthsDevice; auto& contextLengthsHost = runtimeBuffers->contextLengthsHost; auto const beamWidth = generationConfig.beamWidth; TLLM_CHECK_WITH_INFO(beamWidth > 1, "Tiling is only necessary for beam search."); // Note: If computeContextLogits is true, the copy/expansion is performed in gatherLastTokenLogits. if (worldConfig.isLastPipelineParallelRank() && !modelConfig.computeContextLogits()) { // logits needs beamWidth in second dimension auto logitsShape = logits->getShape(); logitsShape.d[1] *= beamWidth; utils::tileBufferReplace(logits, beamWidth, manager); logits->reshape(logitsShape); } utils::tileBufferReplace(contextLengthsDevice, beamWidth, manager); utils::tileCpuBufferReplace(contextLengthsHost, beamWidth); TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); } void RnnStateBuffers::postContextStep(RuntimeBuffers* runtimeBuffers, std::vector const& contextBuffers, BufferManager& manager, ModelConfig const& modelConfig, WorldConfig const& worldConfig) { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); auto& generationConfig = runtimeBuffers->generationConfig; auto& requestTypes = runtimeBuffers->requestTypes; auto& contextLengthsDevice = runtimeBuffers->contextLengthsDevice; auto& outputLengths = runtimeBuffers->outputLengths; auto& lastTokenIds = runtimeBuffers->lastTokenIds; auto const batchSize = generationConfig.batchSize; auto const beamWidth = generationConfig.beamWidth; requestTypes->reshape(ITensor::makeShape({batchSize * beamWidth})); auto hostRequestTypes = bufferCast(*requestTypes); std::fill_n(hostRequestTypes, requestTypes->getSize(), 1); if (modelConfig.computeContextLogits()) { runtimeBuffers->gatherLastTokenLogits(manager, modelConfig, worldConfig); } if (beamWidth > 1) { tile(runtimeBuffers, manager, modelConfig, worldConfig); } // use output lengths after context step manager.copy(*contextLengthsDevice, *outputLengths); // no need to copy data in lastTokenIds because it is overwritten in prepareNextStep lastTokenIds->reshape(ITensor::makeShape({batchSize * beamWidth})); TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); } void RnnStateBuffers::getRuntimeBuffers(RuntimeBuffers const* runtimeBuffers, TensorMap& inputBuffers, TensorMap& outputBuffers, SizeType32 const step, TensorPtr const& inputIds, ModelConfig const& modelConfig, WorldConfig const& worldConfig) const { TLLM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__); auto& logits = runtimeBuffers->logits; auto& hiddenStates = runtimeBuffers->hiddenStates; auto& lastTokenIds = runtimeBuffers->lastTokenIds; auto& requestTypes = runtimeBuffers->requestTypes; if (worldConfig.isLastPipelineParallelRank()) { // feed a view to TensorRT runtime so reshaping does not change logits buffer outputBuffers.insert_or_assign("logits", ITensor::view(logits)); } else { outputBuffers.insert_or_assign("hidden_states_output", hiddenStates); } if (worldConfig.isFirstPipelineParallelRank()) { inputBuffers.insert_or_assign("input_ids", inputIds); } else { inputBuffers.insert_or_assign("hidden_states_input", hiddenStates); } inputBuffers.insert_or_assign("last_token_ids", lastTokenIds); auto const localNbLayers = modelConfig.getNbRnnLayers(worldConfig.getPipelineParallelism()); auto const firstLayerId = worldConfig.getPipelineParallelRank() * localNbLayers; auto const& layerTypes = modelConfig.getLayerTypes(); if (modelConfig.usePagedState()) { inputBuffers.insert_or_assign("slot_mapping", slotMappingDevice); utils::insertTensorVector(inputBuffers, "conv_state_ptr_", convStatePtr, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT); utils::insertTensorVector( inputBuffers, "rnn_state_ptr_", rnnStatePtr, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT); } else { utils::insertTensorVector(inputBuffers, "past_conv_state_", (step % 2) ? convState : convStateAlt, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT); utils::insertTensorVector(outputBuffers, "present_conv_state_", (step % 2) ? convStateAlt : convState, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT); utils::insertTensorVector( inputBuffers, "past_rnn_state_", rnnState, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT); utils::insertTensorVector(outputBuffers, "present_rnn_state_", rnnState, firstLayerId, layerTypes, ModelConfig::LayerType::kRECURRENT); } inputBuffers.insert_or_assign("host_request_types", requestTypes); inputBuffers.insert_or_assign("host_context_lengths", runtimeBuffers->contextLengthsHost); TLLM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__); }