#include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/memoryUtils.h" #include "tensorrt_llm/kernels/cutlass_kernels/cutlass_preprocessors.h" #include "tensorrt_llm/runtime/cudaStream.h" #include #include #include #include "moe_kernels.h" #include "tensorrt_llm/runtime/bufferManager.h" #include #include using namespace tensorrt_llm::kernels; using namespace tensorrt_llm::common; using namespace tensorrt_llm::runtime; constexpr static float FP8_MAX = 448.f; constexpr static float FP4_MAX = 6.f; __host__ __device__ constexpr float applyExpertShift(float weight_value, int expert) { float lookup_table[] = {0.5f, 1.0f, 2.0f}; return weight_value * lookup_table[expert % 3]; } template __global__ void initWeightsKernel(T* data, int64_t w, int64_t h, float base, float scale) { size_t expert_id = blockIdx.z; T* start_offset = data + expert_id * w * h; size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if (x < w && y < h) { start_offset[y * w + x] = (x == y) ? T(applyExpertShift(base * scale, expert_id)) : T(0.f); } } template __global__ void initWeightsGatedKernel(T* data, int64_t w, int64_t h, float base_1, float base_2, float scale) { size_t expert_id = blockIdx.z; T* start_offset = data + expert_id * w * h * 2; size_t x = blockIdx.x * blockDim.x + threadIdx.x; size_t y = blockIdx.y * blockDim.y + threadIdx.y; if (x < w && y < h) { start_offset[y * w + x] = (x == y) ? T(applyExpertShift(base_1 * scale, expert_id)) : T(0.f); start_offset[(y + h) * w + x] = (x == y) ? T(applyExpertShift(base_2 * scale, expert_id)) : T(0.f); } } template __global__ void initBiasToExpertIdKernel(T* data, int64_t w) { size_t expert_id = blockIdx.y; T* start_offset = data + expert_id * w; size_t x = blockIdx.x * blockDim.x + threadIdx.x; if (x < w) start_offset[x] = T(expert_id); } template __global__ void initBiasToExpertIdGatedKernel(T* data, int64_t w) { size_t expert_id = blockIdx.y; T* start_offset = data + expert_id * w * 2; size_t x = blockIdx.x * blockDim.x + threadIdx.x; if (x < w) { start_offset[x] = T(expert_id); start_offset[x + w] = T(expert_id + 1); } } template using sizeof_bits = cutlass::sizeof_bits>::type>; #ifdef ENABLE_FP8 using SafeFP8 = __nv_fp8_e4m3; #else using SafeFP8 = void; #endif #ifdef ENABLE_FP4 using SafeFP4 = __nv_fp4_e2m1; namespace cutlass { template <> struct sizeof_bits { static constexpr int value = 4; }; } // namespace cutlass static_assert(sizeof_bits::value == 4, "SafeFP4 is not 4 bits"); #else using SafeFP4 = void; #endif template class MixtureOfExpertsTest : public ::testing::Test { protected: using GemmDataType = typename TypeTuple_::DataType; using WeightType = typename TypeTuple_::WeightType; using OutputType = typename TypeTuple_::OutputType; constexpr static bool MX_QUANT = TypeTuple_::UseMxQuant; constexpr static bool INT4 = std::is_same_v; constexpr static bool FP8 = std::is_same_v && std::is_same_v; constexpr static bool ACT_FP4 = std::is_same_v; constexpr static bool WEIGHT_FP4 = std::is_same_v; constexpr static bool NVFP4 = ACT_FP4 && WEIGHT_FP4; static_assert(!NVFP4 || !MX_QUANT, "NVFP4 and MX_QUANT are be mutually exclusive"); constexpr static bool MIXED_FP4 = !ACT_FP4 && WEIGHT_FP4; static_assert(MIXED_FP4 || !MX_QUANT, "MIXED_FP4 is only supported with MX_QUANT"); constexpr static bool ANY_FP4 = WEIGHT_FP4 || ACT_FP4; constexpr static bool ANY_FPX = ANY_FP4 || FP8; constexpr static bool INT_QUANT = !std::is_same_v && !MIXED_FP4; constexpr static int WEIGHT_ELEM_PER_BYTE = (INT4 || WEIGHT_FP4) ? 2 : 1; using InputType = std::conditional_t; using WeightStorage = std::conditional_t; constexpr static int64_t HIDDEN_SIZE_MULTIPLIER = 16; constexpr static int64_t MINIMUM_BYTE_ALIGNMENT = 64; constexpr static int64_t MINIMUM_ALIGNMENT = MINIMUM_BYTE_ALIGNMENT * WEIGHT_ELEM_PER_BYTE / sizeof(WeightStorage); constexpr static int64_t DEFAULT_HIDDEN_SIZE = HIDDEN_SIZE_MULTIPLIER * MINIMUM_ALIGNMENT; // FP4 uses the unquantized data type for inputs and quantizes on the fly using DataType = std::conditional_t; // MIXED_FP4 quantizes just the weights on the fly using WeightRawType = std::conditional_t; static BufferManager::CudaStreamPtr mStream; static std::unique_ptr mBufferManager; static int mDeviceCount; std::vector managed_buffers; DataType* mInputTensor{}; int64_t mHiddenSize{}; int64_t mNumExperts{}; int64_t mK{}; float getTolerance(float scale = 1.f) { bool loose_fp8 = mActType != tensorrt_llm::ActivationType::Relu; float tol = std::is_same_v ? 0.1 : std::is_same_v ? 0.1 : std::is_same_v ? 0.001 : std::is_same_v ? 0.005 : std::is_same_v ? 0.05 : std::is_same_v ? (loose_fp8 ? 0.06 : 0.001) : std::is_same_v ? 0.05 : 0.0; // Keep the scale in a sane range return std::max(tol, scale * tol); } static bool shouldSkip() { #ifndef ENABLE_FP8 static_assert(!FP8, "FP8 Tests enabled on unsupported CUDA version"); #endif bool should_skip_no_device = mDeviceCount <= 0; bool should_skip_unsupported_fp8 = getSMVersion() < 89 && FP8; bool should_skip_unsupported_fp4 = (getSMVersion() < 100 || getSMVersion() >= 120) && ANY_FP4; return should_skip_no_device || should_skip_unsupported_fp8 || should_skip_unsupported_fp4; } static void SetUpTestCase() { mDeviceCount = getDeviceCount(); if (shouldSkip()) { GTEST_SKIP() << "Skipping due to no/unsupported GPU"; } mStream = std::make_shared(); mBufferManager = std::make_unique(mStream); } static void TearDownTestCase() { mBufferManager.reset(); mStream.reset(); } void SetUp() override { if (shouldSkip()) { GTEST_SKIP() << "Skipping due to no/unsupported GPU"; } assert(mBufferManager); } void TearDown() override { managed_buffers.clear(); ASSERT_EQ(cudaStreamSynchronize(mStream->get()), cudaSuccess); ASSERT_EQ(cudaGetLastError(), cudaSuccess); } void initWeights(WeightRawType* buffer, int64_t w, int64_t h, float base, float scalar) { dim3 block(16, 16, 1); dim3 grid(divUp(w, block.x), divUp(h, block.y), mNumExperts); initWeightsKernel<<get()>>>(buffer, w, h, base, scalar); } void initBias(DataType* buffer, int64_t w) { dim3 block(256, 1, 1); dim3 grid(divUp(w, block.x), mNumExperts); initBiasToExpertIdKernel<<get()>>>(buffer, w); } void initWeightsGated(WeightRawType* buffer, int64_t w, int64_t h, float base_1, float base_2, float scalar) { if (!mIsGated) return initWeights(buffer, w, h, base_1, scalar); h /= 2; dim3 block(16, 16, 1); dim3 grid(divUp(w, block.x), divUp(h, block.y), mNumExperts); initWeightsGatedKernel<<get()>>>(buffer, w, h, base_1, base_2, scalar); } void initBiasGated(DataType* buffer, int64_t w) { if (!mIsGated) return initBias(buffer, w); w /= 2; dim3 block(256, 1, 1); dim3 grid(divUp(w, block.x), mNumExperts); initBiasToExpertIdGatedKernel<<get()>>>(buffer, w); } CutlassMoeFCRunner mMoERunner{}; char* mWorkspace{}; int* mSelectedExpert; float* mTokenFinalScales{}; WeightRawType* mRawExpertWeight1{}; WeightRawType* mRawExpertWeight2{}; WeightStorage* mExpertWeight1{}; WeightStorage* mExpertWeight2{}; DataType* mExpertIntScale1{}; DataType* mExpertIntScale2{}; float mFP8WeightScalar1{1.f}; float mFP8WeightScalar2{1.f}; float* mExpertFPXScale1{}; float* mExpertFPXScale2{}; float* mExpertFPXScale3{}; float* mExpertFP4ActGlobalScale1{}; float* mExpertFP4WeightGlobalScale1{}; float* mExpertFP4WeightGlobalScale2{}; using TmaWarpSpecializedGroupedGemmInput = tensorrt_llm::TmaWarpSpecializedGroupedGemmInput; using ElementSF = TmaWarpSpecializedGroupedGemmInput::ElementSF; constexpr static int FP4VecSize = MX_QUANT ? TmaWarpSpecializedGroupedGemmInput::MXFPXBlockScaleVectorSize : TmaWarpSpecializedGroupedGemmInput::NVFP4BlockScaleVectorSize; constexpr static int MinAlignmentFP4 = MX_QUANT ? TmaWarpSpecializedGroupedGemmInput::MinNumRowsAlignmentMXFPX : TmaWarpSpecializedGroupedGemmInput::MinNumRowsAlignmentNVFP4; ElementSF* mFP4ScalingFactorsW1 = nullptr; ElementSF* mFP4ScalingFactorsW2 = nullptr; DataType* mExpertBias1{}; DataType* mExpertBias2{}; void* mTpExpertScratch{}; // Copy the experts here when slicing up inputs size_t mTpExpertScratchSize{}; OutputType* mFinalOutput{}; int* mSourceToExpandedMap; float mInterSizeFraction = 4.f; int64_t mInterSize{}; int64_t mTotalTokens{}; bool mUseBias = true; bool mUseLora = false; bool mUsePrequantScale = false; bool mIsGated = false; int64_t mGatedMultiplier = 1; int64_t mGroupSize = -1; tensorrt_llm::ActivationType mActType = tensorrt_llm::ActivationType::Relu; float mSparseMixerEpsilon = 0.2f; // Default this to true. This only matters for K>2, and so by doing this we will test the fused and unfused paths bool mUseDeterminsiticHopperReduce = true; // Disable this for long running tests to speed up runtime bool mIsLongTest = false; // If the test sets mOverrideSelectedConfig1 the BasicPermuteTest and *ParallelTests will use that instead of // looping over samples for the different architectures we support. std::optional mOverrideSelectedConfig1 = std::nullopt; std::optional mOverrideSelectedConfig2 = std::nullopt; // This is the actual tactic we use internally in runMoePermute std::optional mInternalSelectedConfig1 = std::nullopt; std::optional mInternalSelectedConfig2 = std::nullopt; // Keep to simple power of two so we can have tight bounds on precision for quantized modes float const mExpertWDiag1{0.5}; float const mExpertWDiagGated{1}; float const mExpertWDiag2{2}; float mMaxInput{}; char mMemsetValue = 0xD5; template AllocType* allocBuffer(size_t size) { size_t size_bytes = cute::ceil_div(size * sizeof_bits::value, 8); managed_buffers.emplace_back(mBufferManager->gpu(size_bytes)); EXPECT_EQ(cudaGetLastError(), cudaSuccess) << "Error allocating buffer of size: " << size; AllocType* ptr = static_cast(managed_buffers.back()->data()); // Memset to an obviously incorrect value, so we detect any issues with uninitialised fields check_cuda_error(cudaMemsetAsync(ptr, mMemsetValue, size_bytes, mStream->get())); return ptr; } bool checkSufficientTestMemory( int64_t num_tokens, int64_t hidden_size, int64_t num_experts, int64_t k, bool parallel = false) { this->managed_buffers.clear(); // Make sure all the previous buffers are freed check_cuda_error(cudaDeviceSynchronize()); // Sync to make sure all previous operations are resolved // Calculate the size contributions for all the large buffers to check if the GPU has enough space bool const is_gated = tensorrt_llm::isGatedActivation(mActType); size_t const num_gemms = 2 + is_gated; bool const useDeepseek = false; // Expert weights size_t const weight_elems = hidden_size * (hidden_size * mInterSizeFraction) * num_experts * num_gemms; size_t const weight_size = weight_elems * sizeof(WeightStorage) / WEIGHT_ELEM_PER_BYTE; // Workspace size size_t const workspace_size = this->mMoERunner.getWorkspaceSize(num_tokens, hidden_size, hidden_size * 4, num_experts, k, this->mActType, {}, mUseLora, useDeepseek, false, mUsePrequantScale); // The input/output buffers size_t const in_out_size = 2 * num_tokens * hidden_size * sizeof(DataType); // This should be correct to within 100MiB (on tests with 30GiB total) size_t total_size = workspace_size + weight_size + in_out_size; // We allocate an extra shard of the weights for the parallel case, divide by 2 for when TP2 if (parallel) { total_size += weight_size / 2; } // Quantized data types use a second scratch buffer for the weights before quantizing if (ANY_FPX || INT_QUANT) { total_size += weight_elems * sizeof(DataType); } size_t const memory_pool_free_mem_size = mBufferManager->memoryPoolFree(); auto const [freeMem, totalMem] = tensorrt_llm::common::getDeviceMemoryInfo(false); float const freeMemBuffer = 0.9f; // Add some buffer so we aren't completely pushing the limits std::cout << "Free memory is: " << freeMem << ", memory pool size is: " << memory_pool_free_mem_size << ", required memory is: " << total_size << ", device total memory capacity: " << totalMem << std::endl; return (freeMem + memory_pool_free_mem_size) * freeMemBuffer >= total_size; } void initBuffersPermute(std::vector h_hidden_states, std::vector h_token_selected_experts, std::vector h_token_final_scales, int64_t hidden_size, int64_t num_experts, int64_t k, MOEParallelismConfig parallelism_config) { managed_buffers.clear(); mMoERunner.use_deterministic_hopper_reduce_ = k > 2 && mUseDeterminsiticHopperReduce; mHiddenSize = hidden_size; mInterSize = hidden_size * mInterSizeFraction; mNumExperts = num_experts; mK = k; mIsGated = tensorrt_llm::isGatedActivation(mActType); mGatedMultiplier = mIsGated ? 2 : 1; auto const gated_inter = mInterSize * mGatedMultiplier; mTotalTokens = h_hidden_states.size() / hidden_size; EXPECT_EQ(h_token_selected_experts.size(), mTotalTokens * mK); EXPECT_EQ(h_token_final_scales.size(), mTotalTokens * mK); bool const useDeepseek = false; size_t workspace_size = mMoERunner.getWorkspaceSize(mTotalTokens, mHiddenSize, mInterSize, mNumExperts, mK, mActType, parallelism_config, mUseLora, useDeepseek, false, mUsePrequantScale); auto const stream = mStream->get(); mWorkspace = allocBuffer(workspace_size); size_t const expert_matrix_size = mNumExperts * mHiddenSize * mInterSize; mRawExpertWeight1 = allocBuffer(expert_matrix_size * mGatedMultiplier); mRawExpertWeight2 = allocBuffer(expert_matrix_size); size_t const experts_per_node = mNumExperts / parallelism_config.ep_size; int const moe_parallel_size = parallelism_config.tp_size * parallelism_config.ep_size; using SliceWeightType = std::conditional_t; mTpExpertScratchSize = sizeof(SliceWeightType) * expert_matrix_size * mGatedMultiplier / moe_parallel_size; mTpExpertScratchSize += sizeof(SliceWeightType) * expert_matrix_size / moe_parallel_size; mExpertBias1 = nullptr; mExpertBias2 = nullptr; if (mUseBias) { // Allow space for the slice of bias1 in the scratch mTpExpertScratchSize += sizeof(DataType) * experts_per_node * gated_inter / parallelism_config.tp_size; mExpertBias1 = allocBuffer(mNumExperts * gated_inter); mExpertBias2 = allocBuffer(mNumExperts * mHiddenSize); check_cuda_error(cudaMemsetAsync(mExpertBias1, 0x0, mNumExperts * gated_inter * sizeof(DataType), stream)); check_cuda_error(cudaMemsetAsync(mExpertBias2, 0x0, mNumExperts * mHiddenSize * sizeof(DataType), stream)); } if constexpr (INT_QUANT) { mExpertWeight1 = allocBuffer(expert_matrix_size * mGatedMultiplier / WEIGHT_ELEM_PER_BYTE); mExpertWeight2 = allocBuffer(expert_matrix_size / WEIGHT_ELEM_PER_BYTE); mExpertIntScale1 = allocBuffer(mNumExperts * gated_inter); mExpertIntScale2 = allocBuffer(mNumExperts * mHiddenSize); } else if constexpr (ANY_FP4) { // TODO We populate these on the fly, so we can probably reduce these by moe_parallel_size mExpertWeight1 = allocBuffer( expert_matrix_size * mGatedMultiplier / WEIGHT_ELEM_PER_BYTE / moe_parallel_size); mExpertWeight2 = allocBuffer(expert_matrix_size / WEIGHT_ELEM_PER_BYTE / moe_parallel_size); size_t const padded_fc1_size = mNumExperts * mHiddenSize * cute::ceil_div(mInterSize * mGatedMultiplier / parallelism_config.tp_size, MinAlignmentFP4) * MinAlignmentFP4 / parallelism_config.ep_size; size_t const padded_fc2_size = mNumExperts * mInterSize * cute::ceil_div(mHiddenSize, MinAlignmentFP4) * MinAlignmentFP4 / moe_parallel_size; mFP4ScalingFactorsW1 = allocBuffer(padded_fc1_size / FP4VecSize); mFP4ScalingFactorsW2 = allocBuffer(padded_fc2_size / FP4VecSize); } else { mExpertWeight1 = mRawExpertWeight1; mExpertWeight2 = mRawExpertWeight2; } if constexpr (ANY_FPX) { // FP4 uses the same logic as FP8 to generate the global scales mExpertFPXScale1 = allocBuffer(mNumExperts); mExpertFPXScale2 = allocBuffer(1); mExpertFPXScale3 = allocBuffer(mNumExperts); if (ANY_FP4) { mExpertFP4ActGlobalScale1 = allocBuffer(1); mExpertFP4WeightGlobalScale1 = allocBuffer(mNumExperts); mExpertFP4WeightGlobalScale2 = allocBuffer(mNumExperts); } EXPECT_NE(mMaxInput, 0.0f); initFPQuantScales(mMaxInput); } if (parallelism_config.tp_size > 1 || parallelism_config.ep_size > 1) { mTpExpertScratch = allocBuffer(mTpExpertScratchSize); } mTokenFinalScales = allocBuffer(mTotalTokens * mK); mSelectedExpert = allocBuffer(mTotalTokens * mK); mInputTensor = allocBuffer(mTotalTokens * mHiddenSize); mFinalOutput = allocBuffer(mTotalTokens * mHiddenSize); mSourceToExpandedMap = allocBuffer(mTotalTokens * mK); check_cuda_error(cudaMemcpyAsync(mSelectedExpert, h_token_selected_experts.data(), mTotalTokens * mK * sizeof(int), cudaMemcpyHostToDevice, stream)); check_cuda_error(cudaMemcpyAsync(mTokenFinalScales, h_token_final_scales.data(), mTotalTokens * mK * sizeof(float), cudaMemcpyHostToDevice, stream)); check_cuda_error(cudaMemcpyAsync(mInputTensor, h_hidden_states.data(), h_hidden_states.size() * sizeof(DataType), cudaMemcpyHostToDevice, stream)); check_cuda_error(cudaStreamSynchronize(stream)); // Init the diagonals of our matrix, this will set to the scalar value initWeightsGated( mRawExpertWeight1, mHiddenSize, gated_inter, mExpertWDiag1, mExpertWDiagGated, mFP8WeightScalar1); initWeights(mRawExpertWeight2, mInterSize, mHiddenSize, mExpertWDiag2, mFP8WeightScalar2); if (mUseBias) { initBiasGated(mExpertBias1, gated_inter); initBias(mExpertBias2, mHiddenSize); } if constexpr (INT_QUANT) { cutlass_kernels::QuantType quant_type = INT4 ? cutlass_kernels::QuantType::W4_A16 : cutlass_kernels::QuantType::W8_A16; std::vector shape1{(size_t) mNumExperts, (size_t) mHiddenSize, (size_t) gated_inter}; std::vector shape2{(size_t) mNumExperts, (size_t) mInterSize, (size_t) mHiddenSize}; doIntQuant(quant_type, shape1, mRawExpertWeight1, mExpertIntScale1, mExpertWeight1); doIntQuant(quant_type, shape2, mRawExpertWeight2, mExpertIntScale2, mExpertWeight2); } check_cuda_error(cudaStreamSynchronize(stream)); } void doIntQuant(cutlass_kernels::QuantType quant_type, std::vector shape, DataType* inputs, DataType* scales, uint8_t* outputs) { // Runs on the CPU, must be after stream sync if constexpr (INT_QUANT) { check_cuda_error(cudaStreamSynchronize(mStream->get())); size_t elems = std::reduce(shape.begin(), shape.end(), 1, std::multiplies{}); std::vector h_out(elems); std::vector h_input(elems); std::vector h_scales(shape[0] * shape[2]); check_cuda_error(cudaMemcpy(h_input.data(), inputs, elems * sizeof(DataType), cudaMemcpyDeviceToHost)); cutlass_kernels::symmetric_quantize(h_out.data(), h_scales.data(), h_input.data(), shape, quant_type, true); check_cuda_error(cudaMemcpy( outputs, h_out.data(), elems * sizeof(int8_t) / WEIGHT_ELEM_PER_BYTE, cudaMemcpyHostToDevice)); check_cuda_error( cudaMemcpy(scales, h_scales.data(), h_scales.size() * sizeof(DataType), cudaMemcpyHostToDevice)); } } void doFP4Quant(WeightRawType const* raw_weights, WeightStorage* quant_weights, float const* global_scales, ElementSF* scaling_factors, int in_shape, int out_shape, int num_experts) { int const mMultiProcessorCount = tensorrt_llm::common::getMultiProcessorCount(); int padded_stride = cute::ceil_div(out_shape, MinAlignmentFP4) * MinAlignmentFP4; check_cuda_error(cudaMemsetAsync(scaling_factors, 0x00, num_experts * padded_stride * cutlass::ceil_div(in_shape, FP4VecSize) * sizeof(ElementSF), mStream->get())); invokeBatchedFP4Quantization(num_experts, out_shape, in_shape, raw_weights, global_scales, reinterpret_cast(quant_weights), reinterpret_cast(scaling_factors), MX_QUANT, mMultiProcessorCount, mStream->get()); // for (int i = 0; i < num_experts; i++) // { // auto* weight_start = raw_weights + i * in_shape * out_shape; // auto* quant_weight_start = quant_weights + i * in_shape * out_shape / WEIGHT_ELEM_PER_BYTE; // auto* scaling_factor_start // = scaling_factors + i * (int64_t) padded_stride * cutlass::ceil_div(in_shape, FP4VecSize); // printf("Expert %d: Weight offset: %lld, quant_weight_offset: %lld, scaling_factor_offset: %lld\n", // (long long) i, (long long) i * in_shape * out_shape, // (long long) i * in_shape * out_shape / WEIGHT_ELEM_PER_BYTE, // (long long) i * (int64_t) padded_stride * cutlass::ceil_div(in_shape, FP4VecSize)); // check_cuda_error(cudaStreamSynchronize(mStream->get())); // std::cout << "Quant " << i << " starting" << std::endl; // auto data = getDataFromDevice(scaling_factor_start, 4 * cutlass::ceil_div(in_shape, FP4VecSize)); // for (auto v : data) // { // std::cout << (float) v << ", "; // } // std::cout << std::endl; // invokeFP4Quantization(out_shape, in_shape, weight_start, global_scales + i, // reinterpret_cast(quant_weight_start), reinterpret_cast(scaling_factor_start), // MX_QUANT, tensorrt_llm::FP4QuantizationSFLayout::SWIZZLED, mMultiProcessorCount, mStream->get()); // // check_cuda_error(cudaStreamSynchronize(mStream->get())); // // std::cout << "Quant " << i << " done" << std::endl; // // auto data = getDataFromDevice(mInputTensor, mHiddenSize); // // for (auto v : data) // // { // // std::cout << (float)v << ", "; // // } // // std::cout << std::endl; // } } constexpr static float getFPXActScalar(float in) { if (FP8 || MIXED_FP4) return FP8_MAX / in; if (NVFP4) // We need to represent the block SF using FP8, so the largest value should be at most FP4_MAX * FP8_MAX // return FP8_MAX * FP4_MAX / in; // We carefully control precision in FP4. We want to avoid introducing any non-powers of two return 2.0f; return 1.0f; } constexpr static float getFPXWeightScalar(float in) { if (FP8) return FP8_MAX / in; if (NVFP4 || MIXED_FP4) // We need to represent the block SF using FP8, so the largest value should be at most FP4_MAX * FP8_MAX // return FP8_MAX * FP4_MAX / in; // We carefully control precision in FP4. We want to avoid introducing any non-powers of two return 2.0f; return 1.0f; } void initFPQuantScales(float max_input) { check_cuda_error(cudaStreamSynchronize(mStream->get())); // Add shift to the max because we add an adjustment for each expert so they get different results. float maxW1 = 0.f; int maxIndex = 0; float maxW2 = 0.f; float const maxW1GatedVal = mIsGated ? std::max(mExpertWDiag1, mExpertWDiagGated) : mExpertWDiag1; for (int i = 0; i < mNumExperts; i++) { float w1 = applyExpertShift(maxW1GatedVal, i); float w2 = applyExpertShift(mExpertWDiag2, i); if (w1 > maxW1) { maxW1 = w1; maxW2 = w2; maxIndex = i; } } // Weight scales are well-behaved powers of two so we use a power of two to improve our FP8 precision float scaleW1 = getFPXWeightScalar(maxW1); float scaleW2 = getFPXWeightScalar(maxW2); float scaleAct1 = getFPXActScalar(max_input); float maxFC1Output = calcMLPVal(max_input, maxIndex) / maxW2; float scaleAct2 = getFPXActScalar(maxFC1Output); ASSERT_NE(mExpertFPXScale1, nullptr); ASSERT_NE(mExpertFPXScale2, nullptr); ASSERT_NE(mExpertFPXScale3, nullptr); std::vector scales_1; std::vector scales_2; std::vector scales_3; if (ANY_FP4) { std::vector scale_global_w1(mNumExperts); std::vector scale_global_w2(mNumExperts); std::vector scales_0(1, scaleAct1); scales_1 = std::vector(mNumExperts); scales_2 = std::vector(1, scaleAct2); scales_3 = std::vector(mNumExperts); for (int i = 0; i < mNumExperts; i++) { float maxW1 = applyExpertShift(maxW1GatedVal, i); float maxW2 = applyExpertShift(mExpertWDiag2, i); float scaleW1 = getFPXWeightScalar(maxW1); float scaleW2 = getFPXWeightScalar(maxW2); scale_global_w1[i] = scaleW1; scale_global_w2[i] = scaleW2; // TODO Per expert scaling factors scales_1[i] = 1.f / (scaleAct1 * scaleW1); scales_3[i] = 1.f / (scaleAct2 * scaleW2); } ASSERT_NE(mExpertFP4ActGlobalScale1, nullptr); ASSERT_NE(mExpertFP4WeightGlobalScale1, nullptr); ASSERT_NE(mExpertFP4WeightGlobalScale2, nullptr); check_cuda_error(cudaMemcpyAsync(mExpertFP4ActGlobalScale1, scales_0.data(), scales_0.size() * sizeof(float), cudaMemcpyHostToDevice, mStream->get())); check_cuda_error(cudaMemcpyAsync(mExpertFP4WeightGlobalScale1, scale_global_w1.data(), scale_global_w1.size() * sizeof(float), cudaMemcpyHostToDevice, mStream->get())); check_cuda_error(cudaMemcpyAsync(mExpertFP4WeightGlobalScale2, scale_global_w2.data(), scale_global_w2.size() * sizeof(float), cudaMemcpyHostToDevice, mStream->get())); } else { mFP8WeightScalar1 = scaleW1; mFP8WeightScalar2 = scaleW2; scales_1 = std::vector(mNumExperts, 1.f / (scaleW1 * scaleAct1)); scales_2 = std::vector(1, scaleAct2); scales_3 = std::vector(mNumExperts, 1.f / (scaleW2 * scaleAct2)); } check_cuda_error(cudaMemcpyAsync(mExpertFPXScale1, scales_1.data(), scales_1.size() * sizeof(float), cudaMemcpyHostToDevice, mStream->get())); check_cuda_error(cudaMemcpyAsync(mExpertFPXScale2, scales_2.data(), scales_2.size() * sizeof(float), cudaMemcpyHostToDevice, mStream->get())); check_cuda_error(cudaMemcpyAsync(mExpertFPXScale3, scales_3.data(), scales_3.size() * sizeof(float), cudaMemcpyHostToDevice, mStream->get())); check_cuda_error(cudaStreamSynchronize(mStream->get())); } void resetOutBuffers() { auto stream = mStream->get(); check_cuda_error(cudaStreamSynchronize(stream)); if (mTpExpertScratch) check_cuda_error(cudaMemsetAsync(mTpExpertScratch, 0x0, mTpExpertScratchSize, stream)); check_cuda_error(cudaMemsetAsync(mFinalOutput, 0x0, mTotalTokens * mHiddenSize * sizeof(OutputType), stream)); check_cuda_error(cudaMemsetAsync(mSourceToExpandedMap, 0x0, sizeof(int) * mTotalTokens * mK, stream)); check_cuda_error(cudaStreamSynchronize(stream)); } template auto populateTokens(std::vector& hidden_states) { // Can't use FP8 param because we recurse with a different type, and we also reuse this for MIXED_FP4 if constexpr (std::is_same_v) { // Call the standard setup and then perform the quantization manually std::vector internal_states(hidden_states.size()); populateTokens(internal_states); mMaxInput = *std::max_element(internal_states.begin(), internal_states.end()); float scalar = getFPXActScalar(mMaxInput); std::transform(internal_states.begin(), internal_states.end(), hidden_states.begin(), [scalar](OutputType in) -> T { return static_cast((float) in * scalar); }); // Do the reverse transformation since we only have so much precision and this is a pretty broad range std::transform(hidden_states.begin(), hidden_states.end(), internal_states.begin(), [scalar](T in) -> OutputType { return static_cast(((float) in) / scalar); }); return internal_states; } else if constexpr (ACT_FP4) { float const max_scale = 1.0f; mMaxInput = FP4_MAX * max_scale; // Excludes 0.75 as this causes increased quantization error std::array allowed_values{-6.f, -4.f, -3.f, -2.f, -1.5f, -1.f, 0.0f, 1.f, 1.5f, 2.0f, 3.0f, 4.0f, 6.0f}; float scale = 1.f / 32.f; int stride = FP4VecSize; for (int i = 0; i < hidden_states.size(); i += stride) { for (int j = 0; j < stride; j++) { hidden_states[i + j] = allowed_values[(i / stride + j) % allowed_values.size()] * scale; } mMaxInput = std::max(mMaxInput, FP4_MAX * scale); scale *= 2.f; if (scale >= max_scale) { scale = 1 / 32.f; } } return hidden_states; } else { // Generates numbers in increments of 1/max_order_of_magnitude in the range [0, 1) constexpr int max_order_of_magnitude = 256; std::vector base(hidden_states.size()); std::iota(base.begin(), base.end(), 0); std::mt19937 gen(0xD5); std::shuffle(base.begin(), base.end(), gen); // Lambda subtracts a small value so we have some < 0 to test the activation for negatives std::transform(base.begin(), base.end(), hidden_states.begin(), [l = hidden_states.size(), max_order_of_magnitude](auto a) { return T(float(a % max_order_of_magnitude) / float(max_order_of_magnitude)) - T(4.f / max_order_of_magnitude); }); mMaxInput = *std::max_element(hidden_states.begin(), hidden_states.end()); return hidden_states; } } std::pair, std::vector> populateRouting(int num_experts, int total_tokens, int k) { // Scratch buffer for generating random experts std::mt19937 gen(0xD5); std::vector src_experts(num_experts); std::iota(src_experts.begin(), src_experts.end(), 0); // Generate a random selection of experts for each token std::vector> expected_experts_tiered(total_tokens); std::generate(expected_experts_tiered.begin(), expected_experts_tiered.end(), [&]() { // Shuffle and pick the first k experts std::shuffle(src_experts.begin(), src_experts.end(), gen); std::vector selected_experts(k); std::copy(src_experts.begin(), src_experts.begin() + k, selected_experts.begin()); return selected_experts; }); // Flatten the tiered experts into a single vector auto expected_experts = flatten(expected_experts_tiered); EXPECT_EQ(expected_experts.size(), total_tokens * k); // These don't affect control flow so we just use some well behaved scales std::vector token_final_scales = {1.f / 8, 5.f / 8, 1.f / 16, 3.f / 4, 3.f / 16}; token_final_scales = expand(token_final_scales, expected_experts.size()); return {expected_experts, token_final_scales}; } void runMoEPermute(std::vector h_hidden_states, std::vector h_token_selected_experts, std::vector h_token_final_scales, int64_t hidden_size, int64_t num_experts, int64_t k, MOEParallelismConfig parallelism_config = {}) { initBuffersPermute(std::move(h_hidden_states), std::move(h_token_selected_experts), std::move(h_token_final_scales), hidden_size, num_experts, k, parallelism_config); runMoEPermute(parallelism_config); } auto getWeights(MOEParallelismConfig parallelism_config) { constexpr bool has_fpx_scales = ANY_FPX; void* ep_scale_1 = has_fpx_scales ? (void*) mExpertFPXScale1 : (void*) mExpertIntScale1; void* ep_scale_2 = has_fpx_scales ? (void*) mExpertFPXScale2 : (void*) mExpertIntScale2; void* ep_scale_3 = has_fpx_scales ? mExpertFPXScale3 : nullptr; using SliceWeightType = std::conditional_t; // FP4 accesses the unquantized weight, so WEIGHT_ELEM_PER_BYTE is ignored in this context constexpr int SLICED_WEIGHT_ELEM_PER_BYTE = WEIGHT_FP4 ? 1 : WEIGHT_ELEM_PER_BYTE; SliceWeightType* slice_weight_1{}; SliceWeightType* slice_weight_2{}; if constexpr (WEIGHT_FP4) { slice_weight_1 = mRawExpertWeight1; slice_weight_2 = mRawExpertWeight2; } else { slice_weight_1 = mExpertWeight1; slice_weight_2 = mExpertWeight2; } // Handle the case with no parallelism to not require the extra alloc if (parallelism_config.tp_size == 1 && parallelism_config.ep_size == 1) { return std::tuple{(void*) slice_weight_1, (void*) slice_weight_2, mExpertBias1, mExpertBias2, ep_scale_1, ep_scale_2, ep_scale_3}; } // Slice weights for EP size_t const gated_inter = mInterSize * mGatedMultiplier; size_t const experts_per_node = mNumExperts / parallelism_config.ep_size; size_t const weight_matrix_size = mHiddenSize * mInterSize * experts_per_node / SLICED_WEIGHT_ELEM_PER_BYTE; size_t const bias_fc1_size = gated_inter * experts_per_node; size_t const bias_fc2_size = mHiddenSize * experts_per_node; size_t const scale1_size = gated_inter * experts_per_node; size_t const scale2_size = mHiddenSize * experts_per_node; auto* weight1_ptr = slice_weight_1 + weight_matrix_size * mGatedMultiplier * parallelism_config.ep_rank; auto* weight2_ptr = slice_weight_2 + weight_matrix_size * parallelism_config.ep_rank; auto* bias1_ptr = mUseBias ? mExpertBias1 + bias_fc1_size * parallelism_config.ep_rank : nullptr; auto* bias2_ptr = mUseBias ? mExpertBias2 + bias_fc2_size * parallelism_config.ep_rank : nullptr; if (INT_QUANT) { ep_scale_1 = mExpertIntScale1 + scale1_size * parallelism_config.ep_rank; ep_scale_2 = mExpertIntScale2 + scale2_size * parallelism_config.ep_rank; } if constexpr (has_fpx_scales) { ep_scale_1 = mExpertFPXScale1 + experts_per_node * parallelism_config.ep_rank; ep_scale_3 = mExpertFPXScale3 + experts_per_node * parallelism_config.ep_rank; } // Slice weights for TP void* scale_1 = ep_scale_1; void* scale_2 = ep_scale_2; void* scale_3 = ep_scale_3; int const tp_size = parallelism_config.tp_size; int const tp_rank = parallelism_config.tp_rank; size_t const matrix_size = mHiddenSize * mInterSize / tp_size; size_t const gated_matrix_size = mHiddenSize * mInterSize * mGatedMultiplier / tp_size; size_t const row_size_inter = mInterSize / tp_size; auto* weight_1 = reinterpret_cast(mTpExpertScratch); auto* weight_2 = weight_1 + experts_per_node * gated_matrix_size / SLICED_WEIGHT_ELEM_PER_BYTE; auto* bias_1 = reinterpret_cast(weight_2 + experts_per_node * matrix_size / SLICED_WEIGHT_ELEM_PER_BYTE); // 2D memcpy just the slices we care about // TODO Re-quantize here with matrices divided size_t const row_size_1 = matrix_size * sizeof(SliceWeightType) / SLICED_WEIGHT_ELEM_PER_BYTE; check_cuda_error( cudaMemcpy2DAsync(weight_1, row_size_1, (uint8_t*) weight1_ptr + row_size_1 * tp_rank, row_size_1 * tp_size, row_size_1, experts_per_node * mGatedMultiplier, cudaMemcpyDeviceToDevice, mStream->get())); size_t const row_size_2 = row_size_inter * sizeof(SliceWeightType) / SLICED_WEIGHT_ELEM_PER_BYTE; check_cuda_error( cudaMemcpy2DAsync(weight_2, row_size_2, (uint8_t*) weight2_ptr + row_size_2 * tp_rank, row_size_2 * tp_size, row_size_2, experts_per_node * mHiddenSize, cudaMemcpyDeviceToDevice, mStream->get())); if (mUseBias) { size_t const row_size_bias = row_size_inter * sizeof(DataType); check_cuda_error(cudaMemcpy2DAsync(bias_1, row_size_bias, (uint8_t*) bias1_ptr + row_size_bias * tp_rank, row_size_bias * tp_size, row_size_bias, experts_per_node * mGatedMultiplier, cudaMemcpyDeviceToDevice, mStream->get())); } if constexpr (INT_QUANT) { scale_2 = ep_scale_2; size_t const row_size_scale = row_size_inter * sizeof(DataType); check_cuda_error(cudaMemcpy2DAsync(scale_1, row_size_scale, (uint8_t*) ep_scale_1 + row_size_scale * tp_rank, row_size_scale * tp_size, row_size_scale, experts_per_node * mGatedMultiplier, cudaMemcpyDeviceToDevice, mStream->get())); } bias_1 = mUseBias ? bias_1 : nullptr; return std::tuple{(void*) weight_1, (void*) weight_2, bias_1, bias2_ptr, scale_1, scale_2, scale_3}; } auto getFilteredConfigs(int sm) { auto tactics = mMoERunner.getTactics(); if (sm == 89 || sm >= 120) { // Filter some unsupported configs for L40S auto it = std::remove_if(tactics.begin(), tactics.end(), [&](auto conf) { using tensorrt_llm::cutlass_extensions::CutlassTileConfig; auto checks = std::vector{ // Fail for BF16/FP16 conf.tile_config_sm80 == CutlassTileConfig::CtaShape128x128x64_WarpShape64x32x64, conf.tile_config_sm80 == CutlassTileConfig::CtaShape64x128x64_WarpShape32x64x64 && conf.stages == 4, // Fail for FP8 FP8 && conf.tile_config_sm80 == CutlassTileConfig::CtaShape16x256x128_WarpShape16x64x128 && conf.stages >= 3, }; return std::any_of(checks.begin(), checks.end(), [](auto v) { return v; }); }); tactics.erase(it, tactics.end()); } EXPECT_FALSE(tactics.empty()); return tactics; } auto selectTacticsForArch(int sm) { bool is_tma_warp_specialized = sm >= 90 && !INT_QUANT; auto tactics = getFilteredConfigs(sm); auto it = std::find_if(tactics.begin(), tactics.end(), [is_tma_warp_specialized](auto& c) { return c.is_tma_warp_specialized == is_tma_warp_specialized; }); if (it == tactics.end()) { // Fall back to any tactic std::cout << "WARNING: Could not find config for sm version " << sm << std::endl; return std::pair{tactics[0], tactics[0]}; } return std::pair(*it, *it); } using ConfigsToTestVec = std::vector>; auto getAllTileConfigsToTest() { if (mOverrideSelectedConfig1 && mOverrideSelectedConfig2) { return ConfigsToTestVec{std::pair{*mOverrideSelectedConfig1, *mOverrideSelectedConfig2}}; } int sm = getSMVersion(); ConfigsToTestVec tactics = {selectTacticsForArch(sm)}; if (sm >= 90 && !ANY_FPX) { // SM90+ should also grab some configs for SM80 to test them tactics.push_back(selectTacticsForArch(80)); } return tactics; } void runMoEPermute(MOEParallelismConfig parallelism_config) { // Clear the buffers to blank so we can assume zero if not written resetOutBuffers(); auto [weight1_ptr, weight2_ptr, bias1_ptr, bias2_ptr, scale1_ptr, scale2_ptr, scale3_ptr] = getWeights(parallelism_config); auto stream = mStream->get(); auto tactic1 = mInternalSelectedConfig1; auto tactic2 = mInternalSelectedConfig2; if (!tactic1) { int sm = getSMVersion(); std::tie(tactic1, tactic2) = selectTacticsForArch(sm); } ASSERT_TRUE(tactic1.has_value()); ASSERT_TRUE(tactic2.has_value()); QuantParams quant_params; if constexpr (INT_QUANT) { ASSERT_TRUE(scale1_ptr && scale2_ptr); quant_params = QuantParams::Int(scale1_ptr, scale2_ptr); } else if (FP8) { ASSERT_TRUE(scale1_ptr && scale2_ptr && scale3_ptr); quant_params = QuantParams::FP8(static_cast(scale1_ptr), static_cast(scale2_ptr), static_cast(scale3_ptr)); } else if (ANY_FP4) { ASSERT_TRUE(mExpertFP4ActGlobalScale1); ASSERT_TRUE(mFP4ScalingFactorsW1 && mFP4ScalingFactorsW2); ASSERT_TRUE(scale1_ptr && scale2_ptr && scale3_ptr); auto constructor = NVFP4 ? &QuantParams::FP4 : &QuantParams::FP8MXFP4; quant_params = constructor(mExpertFP4ActGlobalScale1, mFP4ScalingFactorsW1, static_cast(scale1_ptr), static_cast(scale2_ptr), mFP4ScalingFactorsW2, static_cast(scale3_ptr)); } if constexpr (WEIGHT_FP4) { // Dynamically quantize using the proper tp slice doFP4Quant(static_cast(weight1_ptr), mExpertWeight1, mExpertFP4WeightGlobalScale1, mFP4ScalingFactorsW1, mHiddenSize, mGatedMultiplier * mInterSize / parallelism_config.tp_size, mNumExperts / parallelism_config.ep_size); doFP4Quant(static_cast(weight2_ptr), mExpertWeight2, mExpertFP4WeightGlobalScale2, mFP4ScalingFactorsW2, mInterSize / parallelism_config.tp_size, mHiddenSize, mNumExperts / parallelism_config.ep_size); weight1_ptr = mExpertWeight1; weight2_ptr = mExpertWeight2; } LoraParams lora_params; bool const useFp8BlockScales = false; bool const minLatencyMode = false; MoeMinLatencyParams min_latency_params; mMoERunner.setTactic(tactic1, tactic2); mMoERunner.runMoe(mInputTensor, nullptr, mSelectedExpert, mTokenFinalScales, weight1_ptr, bias1_ptr, mActType, weight2_ptr, bias2_ptr, quant_params, mTotalTokens, mHiddenSize, mInterSize / parallelism_config.tp_size, mNumExperts, mK, mWorkspace, mFinalOutput, mSourceToExpandedMap, parallelism_config, mUseLora, lora_params, useFp8BlockScales, minLatencyMode, min_latency_params, stream); check_cuda_error(cudaStreamSynchronize(stream)); } template std::vector getDataFromDevice(T const* in, size_t length) { std::vector data(length); auto const stream = mStream->get(); check_cuda_error(cudaMemcpyAsync(data.data(), in, length * sizeof(T), cudaMemcpyDeviceToHost, stream)); check_cuda_error(cudaStreamSynchronize(mStream->get())); return data; } auto maskSelectedExpertsForTP(std::vector const& vector, int tp_size, int tp_rank) { std::vector result; int num_experts_per_node = mNumExperts / tp_size; std::transform(vector.begin(), vector.end(), std::back_inserter(result), [=](int entry) { if (entry >= num_experts_per_node * tp_rank && entry < num_experts_per_node * (tp_rank + 1)) return entry; return (int) mNumExperts; }); return result; } void debugPrint() { #define PRINT_CAST(array, size, cast) \ do \ if (array) \ { \ auto data = getDataFromDevice(array, size); \ std::cout << #array << ": "; \ for (auto v : data) \ { \ if (cast(v)) \ std::cout << cast(v) << ", "; \ else \ std::cout << "., "; \ } \ std::cout << std::endl; \ } \ while (0) #define PRINT(array, size) PRINT_CAST(array, size, ) using WeightPrintType = std::conditional_t; PRINT_CAST((WeightPrintType*) mExpertWeight1, mNumExperts * mHiddenSize * mInterSize * mGatedMultiplier / WEIGHT_ELEM_PER_BYTE, float); PRINT_CAST( (WeightPrintType*) mExpertWeight2, mNumExperts * mHiddenSize * mInterSize / WEIGHT_ELEM_PER_BYTE, float); // PRINT_CAST(mRawExpertWeight1, mNumExperts * mHiddenSize * mInterSize * mGatedMultiplier, float); // PRINT_CAST(mRawExpertWeight2, mNumExperts * mHiddenSize * mInterSize, float); PRINT_CAST(mExpertBias1, mNumExperts * mInterSize * mGatedMultiplier, float); PRINT_CAST(mExpertBias2, mNumExperts * mHiddenSize, float); PRINT_CAST(mExpertIntScale1, mNumExperts * mInterSize * mGatedMultiplier, float); PRINT_CAST(mExpertIntScale2, mNumExperts * mHiddenSize, float); PRINT(mFinalOutput, mTotalTokens * mHiddenSize); PRINT(mSelectedExpert, mTotalTokens * mK); PRINT(mTokenFinalScales, mTotalTokens * mK); PRINT_CAST(mInputTensor, mTotalTokens * mHiddenSize, float); PRINT(mSourceToExpandedMap, mTotalTokens * mK); #undef PRINT_CAST #undef PRINT } template T actfn(T in) { if (mActType == tensorrt_llm::ActivationType::Identity) return in; if (mActType == tensorrt_llm::ActivationType::Relu) return std::max(in, T(0.0f)); if (mActType == tensorrt_llm::ActivationType::Gelu || mActType == tensorrt_llm::ActivationType::Geglu) return (std::erf(float(in) * float(sqrt(0.5))) + 1) * 0.5f * float(in); if (mActType == tensorrt_llm::ActivationType::Silu || mActType == tensorrt_llm::ActivationType::Swiglu) { return (float(in) / (1.f + std::exp(-(in)))); } assert(false); return in; } float calcMLPVal(float input, int expert_id, bool final_bias = false) { if (expert_id >= mNumExperts) return 0; float w1_bias = mUseBias ? expert_id : 0.f; float activated = 0; if (mIsGated) { float scalar = applyExpertShift(mExpertWDiag1, expert_id); float fc1 = input * scalar + w1_bias; float gated_scalar = applyExpertShift(mExpertWDiagGated, expert_id); float gated_bias = mUseBias ? w1_bias + 1.f : 0.f; float gate = input * gated_scalar + gated_bias; activated = fc1 * actfn(gate); } else { float scalar = applyExpertShift(mExpertWDiag1, expert_id); float fc1 = input * scalar + w1_bias; activated = actfn(fc1); } EXPECT_TRUE(mUseBias || !final_bias); float result = activated * applyExpertShift(mExpertWDiag2, expert_id) + (float) (final_bias ? expert_id : 0); return result; } float calcMLPValWithFinalBias(float input, int expert_id) { return calcMLPVal(input, expert_id, mUseBias); } template [[nodiscard]] auto repeat(std::vector const& vector, int64_t repetitions) { return repeat_blocks(vector, vector.size(), repetitions); } template [[nodiscard]] auto repeat_blocks(std::vector const& vector, int64_t block_size, int64_t repetitions) { std::vector output; output.reserve(vector.size() * repetitions); for (int64_t block = 0; block < vector.size(); block += block_size) { for (int rep = 0; rep < repetitions; rep++) { output.insert(output.end(), vector.begin() + block, vector.begin() + block + block_size); } } return output; } template [[nodiscard]] auto expand(std::vector const& vector, size_t target_size) { std::vector output; output.reserve(target_size); for (size_t i = 0; i < target_size; i += vector.size()) { auto len = std::min(vector.size(), target_size - i); output.insert(output.end(), vector.begin(), vector.begin() + len); } return output; } template [[nodiscard]] auto flatten(std::vector> const& vector) { std::vector output; for (auto& v : vector) { output.insert(output.end(), v.begin(), v.end()); } return output; } void compareFinal(std::vector const& expected_experts, std::vector const& token_final_scales, std::vector const& input_data, std::vector final_results = {}) { ASSERT_EQ(expected_experts.size(), token_final_scales.size()); ASSERT_EQ(expected_experts.size() / mK, input_data.size() / mHiddenSize); if (final_results.empty()) final_results = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize); for (int64_t token_id = 0; token_id < mTotalTokens; token_id++) { // NOTE: When mInterSize < mHiddenSize, those values get zeroed out by fc1 and lost for (int64_t hidden_id = 0; hidden_id < std::min(mHiddenSize, mInterSize); hidden_id++) { float sum = 0.0f; // Loop for the number of times each token is duplicated for (int k_idx = 0; k_idx < mK; k_idx++) { int selected_expert = expected_experts[token_id * mK + k_idx]; float final_scale_value = token_final_scales[token_id * mK + k_idx]; float final_value = float(calcMLPValWithFinalBias( static_cast(input_data[token_id * mHiddenSize + hidden_id]), selected_expert)); sum += final_value * final_scale_value; } ASSERT_NEAR(OutputType{sum}, final_results[token_id * mHiddenSize + hidden_id], getTolerance(sum)) << "Incorrect final value at for token: " << token_id << " offset: " << hidden_id << " hidden_size: " << mHiddenSize << " inter_size: " << mInterSize; } } } void BasicPermuteTest( int k = 1, int64_t hidden_size = DEFAULT_HIDDEN_SIZE, int64_t num_experts = 4, int64_t num_tokens = 3); std::vector calcPermuteMapExpertParallel(std::vector const& expected_experts); void ExpertParallelTest(int k = 1, int64_t hidden_size = DEFAULT_HIDDEN_SIZE, int64_t num_experts = 4, int64_t num_tokens = 3, float inter_size_fraction = 4.0f) { mInterSizeFraction = inter_size_fraction; // 2 experts per rank ParallelismTest(k, 1, num_experts / 2, hidden_size, num_experts, num_tokens); // 1 expert per rank ParallelismTest(k, 1, num_experts, hidden_size, num_experts, num_tokens); } // Tensor parallel tests default to inter_size_fraction = 1.0f so that all ranks have interesting values (i.e. a // diagonal non-square matrix would be all zeros for the last rank) Note when debugging we occasionally want to edit // the HIDDEN_SIZE_MULTIPLIER to a smaller value to make inspecting weights easier, so account for this so the test // doesn't fail void TensorParallelTest(int k = 1, int64_t hidden_size = DEFAULT_HIDDEN_SIZE, int64_t num_experts = 4, int64_t num_tokens = 3, float inter_size_fraction = std::min(1.0f, HIDDEN_SIZE_MULTIPLIER / 8.0f)) { mInterSizeFraction = inter_size_fraction; ParallelismTest(k, 2, 1, hidden_size, num_experts, num_tokens); ParallelismTest(k, 4, 1, hidden_size, num_experts, num_tokens); ParallelismTest(k, 8, 1, hidden_size, num_experts, num_tokens); } void MixedParallelTest(int k = 1, int64_t hidden_size = DEFAULT_HIDDEN_SIZE, int64_t num_experts = 4, int64_t num_tokens = 3, float inter_size_fraction = 1.0f) { mInterSizeFraction = inter_size_fraction; // 2 experts per rank ParallelismTest(k, 2, num_experts / 2, hidden_size, num_experts, num_tokens); ParallelismTest(k, 8, num_experts / 2, hidden_size, num_experts, num_tokens); // 1 expert per rank ParallelismTest(k, 2, num_experts, hidden_size, num_experts, num_tokens); ParallelismTest(k, 8, num_experts, hidden_size, num_experts, num_tokens); } void ParallelismTest(int k = 1, int tp_size = 4, int ep_size = 2, int64_t hidden_size = DEFAULT_HIDDEN_SIZE, int64_t num_experts = 4, int64_t num_tokens = 3); }; template using LargeMixtureOfExpertsTest = MixtureOfExpertsTest; template struct WeightParams { using DataType = DataType_; using WeightType = WeightType_; using OutputType = OutputType_; constexpr static bool UseMxQuant = MX_QUANT_; }; // TODO Fix int quantized using Types = ::testing::Types< #ifdef ENABLE_BF16 WeightParams<__nv_bfloat16>, #endif #ifdef ENABLE_FP8 WeightParams, #endif #ifdef ENABLE_FP4 WeightParams, WeightParams, #endif WeightParams, WeightParams // , WeightParams, WeightParams >; TYPED_TEST_SUITE(MixtureOfExpertsTest, Types); // Have a separate test with only FP4, FP8 and half data type because this test is long using LargeTestTypes = ::testing::Types< #ifdef ENABLE_FP4 WeightParams, #endif #ifdef ENABLE_FP8 WeightParams, #endif WeightParams>; TYPED_TEST_SUITE(LargeMixtureOfExpertsTest, LargeTestTypes); template BufferManager::CudaStreamPtr MixtureOfExpertsTest::mStream{}; template std::unique_ptr MixtureOfExpertsTest::mBufferManager{}; template int MixtureOfExpertsTest::mDeviceCount{}; template void MixtureOfExpertsTest::BasicPermuteTest( int k, int64_t hidden_size, int64_t num_experts, int64_t num_tokens) { if constexpr (ANY_FPX) { // TODO Remove this when bias + FPX is supported mUseBias = false; } if (ANY_FP4) { if (mActType != tensorrt_llm::ActivationType::Relu) { // FP4 has far too little precision to get any sort of consistency with non-relu actfn GTEST_SKIP(); return; } } auto test_archs = getAllTileConfigsToTest(); for (auto [gemm1, gemm2] : test_archs) { mInternalSelectedConfig1 = gemm1; mInternalSelectedConfig2 = gemm2; // Input data for each sequence std::vector hidden_input(hidden_size * num_tokens); auto raw_unquant_input = populateTokens(hidden_input); auto [expected_experts, token_final_scales] = populateRouting(num_experts, num_tokens, k); runMoEPermute(hidden_input, expected_experts, token_final_scales, hidden_size, num_experts, k); bool should_be_deterministic = mUseDeterminsiticHopperReduce || mK < 3 || getSMVersion() < 90 || getSMVersion() >= 120; if (should_be_deterministic && !mIsLongTest) { auto first_iter = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize); mMemsetValue = ~mMemsetValue; // Also check it doesn't depend on uninitialised memory runMoEPermute(hidden_input, expected_experts, token_final_scales, hidden_size, num_experts, k); auto second_iter = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize); ASSERT_TRUE(std::equal(first_iter.begin(), first_iter.end(), second_iter.begin())) << "Running permute twice does not generate the same results"; } auto proj_map = getDataFromDevice(mSourceToExpandedMap, mTotalTokens * k); auto permute_map = calcPermuteMapExpertParallel(expected_experts); ASSERT_EQ(permute_map, proj_map); compareFinal(expected_experts, token_final_scales, raw_unquant_input); } } TYPED_TEST(MixtureOfExpertsTest, Permute) { this->BasicPermuteTest(); } TYPED_TEST(MixtureOfExpertsTest, PermuteK2) { this->BasicPermuteTest(2); } TYPED_TEST(MixtureOfExpertsTest, PermuteK3) { this->BasicPermuteTest(3); } TYPED_TEST(MixtureOfExpertsTest, PermuteSweepNumTokens) { this->mIsLongTest = true; for (int num_tokens : {2, 8, 15, 19, 64, 73, 256}) { this->BasicPermuteTest(1, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); this->BasicPermuteTest(2, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); this->BasicPermuteTest(3, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); } } TYPED_TEST(MixtureOfExpertsTest, PermuteSweepNumTokensGeglu) { this->mIsLongTest = true; this->mActType = tensorrt_llm::ActivationType::Geglu; for (int num_tokens : {2, 8, 15, 19, 64, 73, 256}) { this->BasicPermuteTest(1, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); this->BasicPermuteTest(2, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); this->BasicPermuteTest(3, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); } } TYPED_TEST(MixtureOfExpertsTest, PermuteNoBias) { this->mUseBias = false; this->BasicPermuteTest(); this->BasicPermuteTest(2); this->BasicPermuteTest(3); } TYPED_TEST(MixtureOfExpertsTest, PermuteGelu) { this->mActType = tensorrt_llm::ActivationType::Gelu; this->BasicPermuteTest(); this->BasicPermuteTest(2); this->BasicPermuteTest(3); } TYPED_TEST(MixtureOfExpertsTest, PermuteSilu) { this->mActType = tensorrt_llm::ActivationType::Silu; this->BasicPermuteTest(); this->BasicPermuteTest(2); this->BasicPermuteTest(3); } TYPED_TEST(MixtureOfExpertsTest, PermuteGeglu) { this->mActType = tensorrt_llm::ActivationType::Geglu; this->BasicPermuteTest(); this->BasicPermuteTest(2); this->BasicPermuteTest(3); } TYPED_TEST(MixtureOfExpertsTest, PermuteSwiglu) { this->mActType = tensorrt_llm::ActivationType::Swiglu; this->BasicPermuteTest(); this->BasicPermuteTest(2); this->BasicPermuteTest(3); } TYPED_TEST(MixtureOfExpertsTest, PermuteNonDeterministic) { this->mUseDeterminsiticHopperReduce = false; // Just test case 3, cases 1&2 always use the fused paths this->BasicPermuteTest(3); } TYPED_TEST(MixtureOfExpertsTest, PermuteVerySmall) { for (int i = 1; i <= 3; i++) { this->BasicPermuteTest(1, this->MINIMUM_ALIGNMENT * i); this->BasicPermuteTest(2, this->MINIMUM_ALIGNMENT * i); this->BasicPermuteTest(3, this->MINIMUM_ALIGNMENT * i); } } TYPED_TEST(MixtureOfExpertsTest, PermuteNonPowerOfTwo) { this->BasicPermuteTest(1, this->DEFAULT_HIDDEN_SIZE, 10); this->BasicPermuteTest(2, this->DEFAULT_HIDDEN_SIZE, 10); this->BasicPermuteTest(3, this->DEFAULT_HIDDEN_SIZE, 10); } TYPED_TEST(MixtureOfExpertsTest, PermuteNonPowerOfTwoSwiglu) { this->mActType = tensorrt_llm::ActivationType::Swiglu; this->BasicPermuteTest(1, this->DEFAULT_HIDDEN_SIZE, 10); this->BasicPermuteTest(2, this->DEFAULT_HIDDEN_SIZE, 10); this->BasicPermuteTest(3, this->DEFAULT_HIDDEN_SIZE, 10); } TYPED_TEST(MixtureOfExpertsTest, PermuteManyExperts) { this->mIsLongTest = true; /* This test is very slow. Only do one k value */ this->BasicPermuteTest(2, this->MINIMUM_ALIGNMENT, 512); } TYPED_TEST(MixtureOfExpertsTest, PermuteSwigluVerySmall) { this->mActType = tensorrt_llm::ActivationType::Swiglu; for (int i = 1; i <= 3; i++) { this->BasicPermuteTest(1, this->MINIMUM_ALIGNMENT * i); this->BasicPermuteTest(2, this->MINIMUM_ALIGNMENT * i); this->BasicPermuteTest(3, this->MINIMUM_ALIGNMENT * i); } } TYPED_TEST(MixtureOfExpertsTest, PermuteMixtral8x7b) { this->mIsLongTest = true; this->mUseBias = false; this->mActType = tensorrt_llm::ActivationType::Swiglu; this->BasicPermuteTest(2, 4096, 8); } TYPED_TEST(MixtureOfExpertsTest, PermuteDeepSeekV3) { this->mIsLongTest = true; this->mUseBias = false; this->mActType = tensorrt_llm::ActivationType::Swiglu; size_t hidden_size = 7168; size_t inter_size = 2048; this->mInterSizeFraction = float(inter_size) / hidden_size; if (!this->checkSufficientTestMemory(100, hidden_size, 256, 8)) { GTEST_SKIP() << "Insufficient free memory for test"; } this->BasicPermuteTest(8, hidden_size, 256, 100); } template std::vector MixtureOfExpertsTest::calcPermuteMapExpertParallel( std::vector const& expected_experts) { std::vector map(expected_experts.size()); auto getInterleavedIndex = [this](int i) { return (i % mK) * mTotalTokens + i / mK; }; int map_idx = 0; for (int expert = 0; expert < mNumExperts * 2; expert++) { for (int i = 0; i < map.size(); i++) { if (expected_experts[i] == expert) map[getInterleavedIndex(i)] = map_idx++; } } return map; } template void MixtureOfExpertsTest::ParallelismTest( int k, int tp_size, int ep_size, int64_t hidden_size, int64_t num_experts, int64_t num_tokens) { if (ANY_FPX) { // TODO Remove this when bias + FPX is supported mUseBias = false; } if (ANY_FP4) { if (mActType != tensorrt_llm::ActivationType::Relu) { // FP4 has far too little precision to get any sort of consistency with non-relu actfn GTEST_SKIP(); return; } } ASSERT_LE(ep_size, num_experts); if (tp_size == 1) { // Only the first 4 experts are ever used. They should be split across at least 2 ranks ASSERT_LT(num_experts / ep_size, 4) << "Expert parallelism must have less than 4 experts per rank or the test is ineffective"; } auto test_archs = getAllTileConfigsToTest(); for (auto [gemm1, gemm2] : test_archs) { mInternalSelectedConfig1 = gemm1; mInternalSelectedConfig2 = gemm2; std::vector hidden_input(hidden_size * num_tokens); auto raw_unquant_input = populateTokens(hidden_input); auto [expected_experts, token_final_scales] = populateRouting(num_experts, num_tokens, k); std::vector results(hidden_input.size(), 0); for (int i = 0; i < tp_size; i++) { for (int j = 0; j < ep_size; j++) { if (i == 0 && j == 0) { // Only need to init the inputs on the first iteration runMoEPermute(hidden_input, expected_experts, token_final_scales, hidden_size, num_experts, k, MOEParallelismConfig{tp_size, i, ep_size, j}); bool should_be_deterministic = mUseDeterminsiticHopperReduce || mK < 3 || getSMVersion() < 90 || getSMVersion() >= 120; if (should_be_deterministic && !mIsLongTest) { auto first_iter = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize); mMemsetValue = ~mMemsetValue; // Also check it doesn't depend on uninitialised memory runMoEPermute(hidden_input, expected_experts, token_final_scales, hidden_size, num_experts, k, MOEParallelismConfig{tp_size, i, ep_size, j}); auto second_iter = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize); ASSERT_TRUE(std::equal(first_iter.begin(), first_iter.end(), second_iter.begin())) << "Running permute a second time does not generate the same results"; } } else { runMoEPermute(MOEParallelismConfig{tp_size, i, ep_size, j}); bool should_be_deterministic = mUseDeterminsiticHopperReduce || mK < 3 || getSMVersion() < 90 || getSMVersion() >= 120; if (should_be_deterministic && !mIsLongTest) { auto first_iter = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize); runMoEPermute(MOEParallelismConfig{tp_size, i, ep_size, j}); auto second_iter = getDataFromDevice(mFinalOutput, mTotalTokens * mHiddenSize); ASSERT_TRUE(std::equal(first_iter.begin(), first_iter.end(), second_iter.begin())) << "Running permute a second time does not generate the same results"; } } auto masked_expected_experts = maskSelectedExpertsForTP(expected_experts, ep_size, j); auto proj_map = getDataFromDevice(mSourceToExpandedMap, mTotalTokens * k); auto permute_map = calcPermuteMapExpertParallel(masked_expected_experts); ASSERT_EQ(permute_map, proj_map) << "Iteration " << i << " " << j << " seq len " << num_tokens; // Do the final reduce auto iter_results = getDataFromDevice(mFinalOutput, mTotalTokens * hidden_size); std::transform( iter_results.cbegin(), iter_results.cend(), results.cbegin(), results.begin(), std::plus<>{}); } } compareFinal(expected_experts, token_final_scales, raw_unquant_input, results); } } #define PARALLEL_TEST_SUITE(ParallelismType) \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType) \ { \ this->ParallelismType##Test(); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##K2) \ { \ this->ParallelismType##Test(2); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##K3) \ { \ this->ParallelismType##Test(3); \ } \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##SweepNumTokens) \ { \ this->mIsLongTest = true; \ for (int num_tokens : {2, 8, 15, 64, 73, 256}) \ { \ this->ParallelismType##Test(1, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); \ this->ParallelismType##Test(2, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); \ this->ParallelismType##Test(3, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); \ } \ } \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##SweepNumTokensGeglu) \ { \ this->mIsLongTest = true; \ this->mActType = tensorrt_llm::ActivationType::Geglu; \ for (int num_tokens : {2, 8, 15, 64, 73, 256}) \ { \ this->ParallelismType##Test(1, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); \ this->ParallelismType##Test(2, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); \ this->ParallelismType##Test(3, this->DEFAULT_HIDDEN_SIZE, 4, num_tokens); \ } \ } \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##NoBias) \ { \ this->mUseBias = false; \ this->ParallelismType##Test(); \ this->ParallelismType##Test(2); \ this->ParallelismType##Test(3); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##Gelu) \ { \ this->mActType = tensorrt_llm::ActivationType::Gelu; \ this->ParallelismType##Test(); \ this->ParallelismType##Test(2); \ this->ParallelismType##Test(3); \ } \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##Silu) \ { \ this->mActType = tensorrt_llm::ActivationType::Silu; \ this->ParallelismType##Test(); \ this->ParallelismType##Test(2); \ this->ParallelismType##Test(3); \ } \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##Geglu) \ { \ this->mActType = tensorrt_llm::ActivationType::Geglu; \ this->ParallelismType##Test(); \ this->ParallelismType##Test(2); \ this->ParallelismType##Test(3); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##Swiglu) \ { \ this->mActType = tensorrt_llm::ActivationType::Swiglu; \ this->ParallelismType##Test(); \ this->ParallelismType##Test(2); \ this->ParallelismType##Test(3); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##Mixtral8x7b) \ { \ this->mIsLongTest = true; \ this->mUseBias = false; \ this->mActType = tensorrt_llm::ActivationType::Swiglu; \ this->ParallelismType##Test(2, 4096, 8, 8, 14336.f / 4096.f); \ } \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##DeepSeekV3) \ { \ this->mIsLongTest = true; \ this->mUseBias = false; \ this->mActType = tensorrt_llm::ActivationType::Swiglu; \ size_t hidden_size = 7168; \ size_t inter_size = 2048; \ this->mInterSizeFraction = float(inter_size) / hidden_size; \ \ if (!this->checkSufficientTestMemory(75, hidden_size, 256, 8, true)) \ { \ GTEST_SKIP() << "Insufficient free memory for test"; \ } \ \ this->ParallelismType##Test(8, hidden_size, 256, 75, this->mInterSizeFraction); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##NonPowerOfTwo) \ { \ this->ParallelismType##Test(1, this->DEFAULT_HIDDEN_SIZE, 10); \ this->ParallelismType##Test(2, this->DEFAULT_HIDDEN_SIZE, 10); \ this->ParallelismType##Test(3, this->DEFAULT_HIDDEN_SIZE, 10); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##NonPowerOfTwoSwiglu) \ { \ this->mActType = tensorrt_llm::ActivationType::Swiglu; \ this->ParallelismType##Test(1, this->DEFAULT_HIDDEN_SIZE, 10); \ this->ParallelismType##Test(2, this->DEFAULT_HIDDEN_SIZE, 10); \ this->ParallelismType##Test(3, this->DEFAULT_HIDDEN_SIZE, 10); \ } \ \ TYPED_TEST(MixtureOfExpertsTest, ParallelismType##ManyExperts) \ { \ this->mIsLongTest = true; \ /* This test is very slow. Only do one k value */ \ this->ParallelismType##Test(2, this->MINIMUM_ALIGNMENT, 512, 3, this->ANY_FP4 ? 8.0f : 4.0f); \ } PARALLEL_TEST_SUITE(ExpertParallel) PARALLEL_TEST_SUITE(TensorParallel) PARALLEL_TEST_SUITE(MixedParallel) TYPED_TEST(MixtureOfExpertsTest, ConfigSweep) { this->mIsLongTest = true; auto genConfigName = [](auto conf) -> std::string { using namespace tensorrt_llm::cutlass_extensions; std::stringstream tactic; tactic << "sm" << conf.sm_version << " tactic with tile shape "; if (conf.is_tma_warp_specialized) { tactic << conf.getTileConfigAsInt() << " and cluster shape " << (int) conf.cluster_shape << " mainloop sched " << (int) conf.mainloop_schedule << " epi sched " << (int) conf.epilogue_schedule; } else if (conf.tile_config_sm80 != CutlassTileConfig::ChooseWithHeuristic) { tactic << (int) conf.getTileConfigAsInt() << " and stages " << (int) conf.stages << " split k " << (int) conf.split_k_factor; } else { return {}; } return tactic.str(); }; auto activation_pool = std::vector{ tensorrt_llm::ActivationType::Relu, tensorrt_llm::ActivationType::Swiglu, tensorrt_llm::ActivationType::Geglu}; if (this->ANY_FP4) activation_pool = {tensorrt_llm::ActivationType::Relu}; auto configs = this->getFilteredConfigs(getSMVersion()); for (auto const activation_type : activation_pool) { for (auto conf1 : configs) { for (auto conf2 : configs) { auto name1 = genConfigName(conf1); auto name2 = genConfigName(conf2); if (name1.empty() || name2.empty()) { FAIL() << "Uninitialised tactic encountered"; } ASSERT_NO_THROW({ this->mActType = activation_type; for (int k = 1; k <= 3; k++) { this->mOverrideSelectedConfig1 = conf1; this->mOverrideSelectedConfig2 = conf2; this->BasicPermuteTest(k); if (::testing::Test::HasFailure()) // Throw on test failure so we get the print message throw std::runtime_error("Test k=" + std::to_string(k) + " Failed"); } }) << "Failed\nTactic 1: " << name1 << "\nTactic 2: " << name2 << " and activation type: " << static_cast(activation_type); } } } } TYPED_TEST(LargeMixtureOfExpertsTest, PermuteVeryLargeExperts) { this->mIsLongTest = true; // Chosen so that hidden_size * inter_size * num_experts >> 2^32, but we can still fit in 80GB for `half` // Uses a non-power of two so any integer overflow will have bad alignment int64_t hidden_size = 31 * 1024; ASSERT_GT(hidden_size * hidden_size * 4, (int64_t) std::numeric_limits::max() + 1ull); int64_t k = 2; // Use k=2 so all experts get a value, with high probability int64_t num_tokens = 10; int64_t num_experts = 4; if (!this->checkSufficientTestMemory(num_tokens, hidden_size, num_experts, k)) { GTEST_SKIP() << "Insufficient free memory for test"; } this->BasicPermuteTest(k, hidden_size, num_experts, num_tokens); // 4 x 32k x 128K experts } TYPED_TEST(LargeMixtureOfExpertsTest, PermuteVeryLongSequence) { this->mIsLongTest = true; this->mUseBias = !this->ANY_FPX; using DataType = typename MixtureOfExpertsTest::DataType; // Sequence * hidden size > INT32_MAX int64_t hidden_size = 2048ll; int64_t num_experts = 4; int64_t k = 1; int64_t tokens_to_test = 100; int64_t num_tokens = 2ll * 1024ll * 1024ll + tokens_to_test + 1ll; ASSERT_GT(hidden_size * (num_tokens - tokens_to_test), (uint64_t) std::numeric_limits::max() + 1ull); if (!this->checkSufficientTestMemory(num_tokens, hidden_size, num_experts, k)) { GTEST_SKIP() << "Insufficient free memory for test"; } std::vector hidden_states(hidden_size * num_tokens); this->mMaxInput = 1.f; // Any arbitrary non-zero value // All tokens to expert 0, so we catch the case where an expert has more than 2^32 tokens std::vector token_selected_experts(num_tokens, 0); std::vector token_final_scales(num_tokens, 1.f); // Override the first few tokens to go to different experts. // This covers the regression case where an overflow only impacts one of the last experts // In particular the case when there are more than 2^32 elements before the last expert for (int i = 0; i < tokens_to_test; i++) { token_selected_experts[i] = i % num_experts; } this->runMoEPermute(hidden_states, token_selected_experts, token_final_scales, hidden_size, num_experts, k); // Just look at the first few tokens this->mTotalTokens = tokens_to_test; token_selected_experts.resize(this->mTotalTokens * this->mK); token_final_scales.resize(this->mTotalTokens * this->mK); hidden_states.resize(hidden_size * this->mTotalTokens); // Create a default vector for the reference outputs of the correct type for FP8 std::vector unquant_states(this->mTotalTokens * hidden_size); this->compareFinal(token_selected_experts, token_final_scales, unquant_states); } template constexpr static auto typeToDtypeID() { if constexpr (std::is_same_v) { return nvinfer1::DataType::kFP8; } else if constexpr (std::is_same_v) { return nvinfer1::DataType::kFP4; } else if constexpr (std::is_same_v) { return nvinfer1::DataType::kINT8; } else if constexpr (std::is_same_v) { return nvinfer1::DataType::kINT4; } else if constexpr (std::is_same_v) { return nvinfer1::DataType::kBF16; } else if constexpr (std::is_same_v) { return nvinfer1::DataType::kHALF; } else if constexpr (std::is_same_v) { return nvinfer1::DataType::kFLOAT; } else { // sizeof(T) to make the static assert dependent on the template static_assert(sizeof(T) == 0, "Unrecognised data type"); } } TYPED_TEST(MixtureOfExpertsTest, RunProfiler) { constexpr bool is_half = std::is_same::value; auto test_func = [this](GemmProfilerBackend::GemmToProfile gemm_to_profile) { int64_t num_experts = 4; int64_t k = 2; GemmProfilerBackend backend; backend.init(this->mMoERunner, gemm_to_profile, typeToDtypeID(), typeToDtypeID(), typeToDtypeID(), num_experts, k, this->DEFAULT_HIDDEN_SIZE, this->DEFAULT_HIDDEN_SIZE * 4, this->mGroupSize, tensorrt_llm::ActivationType::Geglu, false, this->mUseLora, /*min_latency_mode=*/false, /*need_weights=*/true, MOEParallelismConfig{}); auto ws_size = backend.getWorkspaceSize(128); auto workspace = this->template allocBuffer(ws_size); for (int64_t num_tokens : {1, 128}) { backend.prepare(num_tokens, workspace, /*expert_weights=*/nullptr, this->mStream->get()); for (auto const& tactic : this->getAllTileConfigsToTest()) { backend.runProfiler(num_tokens, gemm_to_profile == GemmProfilerBackend::GemmToProfile::GEMM_1 ? tactic.first : tactic.second, workspace, /*expert_weights=*/nullptr, this->mStream->get()); } } ASSERT_EQ(cudaStreamSynchronize(this->mStream->get()), cudaSuccess); ASSERT_EQ(cudaGetLastError(), cudaSuccess); }; ASSERT_NO_THROW(test_func(GemmProfilerBackend::GemmToProfile::GEMM_1)) << "Failed to profile GEMM_1"; ASSERT_NO_THROW(test_func(GemmProfilerBackend::GemmToProfile::GEMM_2)) << "Failed to profile GEMM_2"; } // Data types don't matter for the distribution using MixtureOfExpertsProfilerTest = MixtureOfExpertsTest>; TEST_F(MixtureOfExpertsProfilerTest, TestGeneratedProfilerDistribution) { // int64_t num_tokens = 128; int64_t num_experts = 8; int64_t k = 2; GemmProfilerBackend backend; // We need to test different EP values to ensure the tokens are properly assigned for (int64_t num_tokens : {1, 128}) { int64_t expanded_num_tokens = num_tokens * k; for (int ep : {1, 4, 8}) { backend.init(this->mMoERunner, GemmProfilerBackend::GemmToProfile::GEMM_1, nvinfer1::DataType::kHALF, nvinfer1::DataType::kHALF, nvinfer1::DataType::kHALF, num_experts, k, 1024, 4096, mGroupSize, {}, false, mUseLora, /*min_latency_mode=*/false, /*need_weights=*/true, MOEParallelismConfig{1, 0, ep, ep - 1}); auto ws_size = backend.getWorkspaceSize(num_tokens); auto workspace = this->allocBuffer(ws_size); int64_t num_experts_per_node = num_experts / ep; backend.prepare(num_tokens, workspace, /*expert_weights=*/nullptr, mStream->get()); auto workspaces = backend.getProfilerWorkspaces(num_tokens, getSMVersion() >= 90 && getSMVersion() < 120); #define GET_WS_PTR(type, name) auto* name = reinterpret_cast(workspace + workspaces.at(#name).second) GET_WS_PTR(int64_t*, expert_first_token_offset); GET_WS_PTR(int*, source_to_dest); GET_WS_PTR(int*, dest_to_source); GET_WS_PTR(int*, unpermuted_selected_experts); #undef GET_WS_PTR for (int sample = 0; sample < backend.NUM_ROUTING_SAMPLES; sample++) { auto host_expert_first_token_offset_size = getDataFromDevice( expert_first_token_offset + sample * (num_experts_per_node + 1), num_experts_per_node + 1); auto host_source_to_dest_map = getDataFromDevice(source_to_dest + sample * expanded_num_tokens, expanded_num_tokens); auto host_dest_to_source_map = getDataFromDevice(dest_to_source + sample * expanded_num_tokens, expanded_num_tokens); auto host_token_selected_experts = getDataFromDevice( unpermuted_selected_experts + sample * expanded_num_tokens, expanded_num_tokens); std::vector calculated_routing_values(num_experts_per_node + 1, 0); int skipped = 0; for (auto v : host_token_selected_experts) { ASSERT_TRUE(v < num_experts_per_node || (v == num_experts_per_node && ep > 1)) << "v " << v << " num_experts_per_node " << num_experts_per_node << " ep " << ep; skipped += (v == num_experts_per_node); if (v < num_experts_per_node) { calculated_routing_values[v]++; } } if (num_tokens > 1) { // Check tokens are distributed between all EP ranks // Statistically possible, but so unlikely that it should be considered a bug ASSERT_TRUE(ep == 1 || skipped > 0); // Check all experts get some tokens ASSERT_EQ(std::count(calculated_routing_values.begin(), calculated_routing_values.end() - 1, 0), 0); float p = 1.f / num_experts; float variance = expanded_num_tokens * p * (1 - p); float stddev = sqrt(variance); float mean = expanded_num_tokens * p; for (int i = 0; i < num_experts_per_node; i++) { // All values should be within three standard deviations of the mean // 99.7% of values should fall within this range. // We have NUM_ROUTING_SAMPLES * (8 + 2 + 1) = 176 cases so this is unlikely // If the test changes to have a much larger number of cases this will need revisited EXPECT_LE(abs(calculated_routing_values[i] - mean), 3 * stddev) << "Expert " << i << " for sample " << sample << " has unbalanced token count " << calculated_routing_values[i] << " vs mean value " << mean << " with standard deviation " << stddev; } } ASSERT_EQ(host_expert_first_token_offset_size.back(), expanded_num_tokens - skipped) << "Num expanded tokens " << expanded_num_tokens << " num skipped " << skipped; std::exclusive_scan(calculated_routing_values.begin(), calculated_routing_values.end(), calculated_routing_values.begin(), 0); ASSERT_TRUE(std::equal(calculated_routing_values.begin(), calculated_routing_values.end(), host_expert_first_token_offset_size.begin())); std::fill(calculated_routing_values.begin(), calculated_routing_values.end(), 0); for (int64_t token_idx = 0; token_idx < num_tokens; token_idx++) { for (int64_t k_idx = 0; k_idx < k; k_idx++) { int64_t idx = token_idx * k + k_idx; int64_t expert_idx = host_token_selected_experts[idx]; if (expert_idx < num_experts) { int64_t source_location = k_idx * num_tokens + token_idx; int64_t dest_location = host_expert_first_token_offset_size[expert_idx] + calculated_routing_values[expert_idx]; ASSERT_EQ(host_source_to_dest_map[source_location], dest_location); ASSERT_EQ(host_dest_to_source_map[dest_location], source_location); calculated_routing_values[expert_idx]++; } } } } } } }