/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include "tensorrt_llm/runtime/common.h" #include #include #include namespace tensorrt_llm::runtime { class WorldConfig { public: #if ENABLE_MULTI_DEVICE static SizeType32 constexpr kDefaultGpusPerNode = 8; #else static SizeType32 constexpr kDefaultGpusPerNode = 1; #endif explicit WorldConfig(SizeType32 tensorParallelism = 1, SizeType32 pipelineParallelism = 1, SizeType32 contextParallelism = 1, SizeType32 rank = 0, SizeType32 gpusPerNode = kDefaultGpusPerNode, std::optional> const& deviceIds = std::nullopt, bool enableAttentionDP = false); [[nodiscard]] SizeType32 constexpr getSize() const noexcept { return mTensorParallelism * mPipelineParallelism * mContextParallelism; } [[nodiscard]] SizeType32 constexpr getTensorParallelism() const noexcept { return mTensorParallelism; } [[nodiscard]] bool constexpr isTensorParallel() const noexcept { return mTensorParallelism > 1; } [[nodiscard]] SizeType32 constexpr getPipelineParallelism() const noexcept { return mPipelineParallelism; } [[nodiscard]] bool constexpr isPipelineParallel() const noexcept { return mPipelineParallelism > 1; } [[nodiscard]] SizeType32 constexpr getContextParallelism() const noexcept { return mContextParallelism; } [[nodiscard]] bool constexpr isContextParallel() const noexcept { return mContextParallelism > 1; } [[nodiscard]] SizeType32 constexpr getRank() const noexcept { return mRank; } [[nodiscard]] SizeType32 constexpr getGpusPerNode() const noexcept { return mGpusPerNode; } [[nodiscard]] SizeType32 getGpusPerGroup() const noexcept { return static_cast(mDeviceIds.size()); } [[nodiscard]] SizeType32 getDevice() const noexcept { return mDeviceIds[mRank % getGpusPerGroup()]; } [[nodiscard]] SizeType32 getDeviceOf(SizeType32 rank) const noexcept { return mDeviceIds[rank % getGpusPerGroup()]; } [[nodiscard]] SizeType32 constexpr getPipelineParallelRank() const noexcept { return mRank / (mTensorParallelism * mContextParallelism); } [[nodiscard]] SizeType32 constexpr getTensorParallelRank() const noexcept { return mRank % mTensorParallelism; } [[nodiscard]] SizeType32 constexpr getContextParallelRank() const noexcept { return (mRank % (mTensorParallelism * mContextParallelism)) / mTensorParallelism; } [[nodiscard]] SizeType32 constexpr getLocalRank() const noexcept { return mRank % mGpusPerNode; } [[nodiscard]] SizeType32 constexpr getNodeRank() const noexcept { return mRank / mGpusPerNode; } [[nodiscard]] SizeType32 constexpr getNodeRankOf(SizeType32 rank) const noexcept { return rank / mGpusPerNode; } [[nodiscard]] bool constexpr isFirstPipelineParallelRank() const noexcept { return getPipelineParallelRank() == 0; } //! \brief Is my rank the last rank in its pipeline? [[nodiscard]] bool constexpr isLastPipelineParallelRank() const noexcept { return getPipelineParallelRank() == getPipelineParallelism() - 1; } [[nodiscard]] bool constexpr isFirstTensorParallelRank() const noexcept { return getTensorParallelRank() == 0; } [[nodiscard]] bool constexpr isFirstContextParallelRank() const noexcept { return getContextParallelRank() == 0; } [[nodiscard]] SizeType32 constexpr getLastRank() const noexcept { return getSize() - 1; } [[nodiscard]] bool constexpr enableAttentionDP() const noexcept { return mEnableAttenionDP; } [[nodiscard]] std::vector getPipelineParallelGroup() const; [[nodiscard]] std::vector getTensorParallelGroup() const; [[nodiscard]] std::vector getContextParallelGroup() const; static WorldConfig mpi(SizeType32 gpusPerNode = kDefaultGpusPerNode, std::optional tensorParallelism = std::nullopt, std::optional pipelineParallelism = std::nullopt, std::optional contextParallelism = std::nullopt, std::optional> const& deviceIds = std::nullopt, bool enableAttentionDP = false); [[nodiscard]] bool validMpiConfig() const; private: SizeType32 mTensorParallelism; SizeType32 mPipelineParallelism; SizeType32 mContextParallelism; SizeType32 mRank; SizeType32 mGpusPerNode; bool mEnableAttenionDP; std::vector mDeviceIds; }; } // namespace tensorrt_llm::runtime