import base64 import json import os from typing import Any, Dict, List, Optional, Union import regex as re import tiktoken from torch import TensorType from transformers import PreTrainedTokenizer from transformers.tokenization_utils_base import BatchEncoding, EncodedInput from transformers.utils import PaddingStrategy class ChatGLM4Tokenizer(PreTrainedTokenizer): vocab_files_names = {"vocab_file": "tokenizer.model"} model_input_names = ["input_ids", "attention_mask", "position_ids"] def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False, **kwargs): self.name = "GLM4Tokenizer" self.vocab_file = vocab_file pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" self.pat_str = re.compile(pat_str) self.encode_special_tokens = encode_special_tokens mergeable_ranks = {} with open(vocab_file) as f: for line in f: token, rank = line.strip().split() rank = int(rank) token = base64.b64decode(token) mergeable_ranks[token] = rank self.mergeable_ranks = mergeable_ranks self.tokenizer = tiktoken.Encoding(name="my_tokenizer", pat_str=pat_str, mergeable_ranks=mergeable_ranks, special_tokens={}) self.decoder = {rank: token for token, rank in mergeable_ranks.items()} self.n_words = len(self.decoder) super().__init__( padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) @property def vocab_size(self): return self.n_words def get_vocab(self): """ Returns vocab as a dict """ vocab = { self._convert_id_to_token(i): i for i in range(self.vocab_size) } vocab.update(self.added_tokens_encoder) return vocab def convert_tokens_to_string(self, tokens: List[Union[bytes, str, int]]) -> str: """ Converts a sequence of tokens in a single string. """ text = "" temp = b"" for t in tokens: if isinstance(t, int): t = chr(t) if isinstance(t, str): if temp: text += temp.decode("utf-8", errors="replace") elif isinstance(t, bytes): temp += t else: raise TypeError( "token should only be of type int, bytes or str") if temp: text += temp.decode("utf-8", errors="replace") return text def _tokenize(self, text, **kwargs): tokens = [] ids = self.tokenizer.encode(text) for t in ids: tokens.append(self.decoder[t]) return tokens def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.mergeable_ranks[token] def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, "") def save_vocabulary(self, save_directory, filename_prefix=None): """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ if os.path.isdir(save_directory): vocab_file = os.path.join(save_directory, self.vocab_files_names["vocab_file"]) else: vocab_file = save_directory with open(self.vocab_file, 'rb') as fin: proto_str = fin.read() with open(vocab_file, "wb") as writer: writer.write(proto_str) return (vocab_file, ) def get_prefix_tokens(self): prefix_tokens = [ self.convert_tokens_to_ids("[gMASK]"), self.convert_tokens_to_ids("") ] return prefix_tokens def build_single_message(self, role, metadata, message, tokenize=True): assert role in ["system", "user", "assistant", "observation"], role if tokenize: role_tokens = [self.convert_tokens_to_ids(f"<|{role}|>") ] + self.tokenizer.encode(f"{metadata}\n", disallowed_special=()) message_tokens = self.tokenizer.encode(message, disallowed_special=()) tokens = role_tokens + message_tokens return tokens else: return str(f"<|{role}|>{metadata}\n{message}") def apply_chat_template( self, conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]], "Conversation"], add_generation_prompt: bool = False, tokenize: bool = True, padding: bool = False, truncation: bool = False, max_length: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_dict: bool = False, tokenizer_kwargs: Optional[Dict[str, Any]] = None, add_special_tokens: bool = True, **kwargs, ) -> Union[str, List[int], List[str], List[List[int]], BatchEncoding]: if return_dict and not tokenize: raise ValueError( "`return_dict=True` is incompatible with `tokenize=False`, because there is no dict " "of tokenizer outputs to return.") def handle_single_conversation(conversation): input_ids = self.get_prefix_tokens() if add_special_tokens else [] input_message = "[gMASK]" if add_special_tokens else "" for item in conversation: if item.get("tools"): tools = item["tools"] content = "你是一个名为 GhatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,你的任务是针对用户的问题和要求提供适当的答复和支持。" content += "\n\n# 可用工具" for tool in tools: if tool["type"] == "function": function = tool["function"] content += f"\n\n## {function['name']}\n\n{json.dumps(function, ensure_ascii=False, indent=4)}" content += "\n在调用上述函数时,请使用 Json 格式表示调用的参数。" elif tool["type"] == "python": content += "\n\n## python\n\n当你向 `python` 发送包含 Python 代码的消息时,该代码将会在一个有状态的 Jupyter notebook 环境中执行。\n`python` 返回代码执行的输出,或在执行 60 秒后返回超时。\n`/mnt/data` 将会持久化存储你的文件。在此会话中,`python` 无法访问互联网。不要使用 `python` 进行任何网络请求或者在线 API 调用,这些在线内容的访问将不会成功。" elif tool["type"] == "simple_browser": content += "\n\n## simple_browser\n\n你可以使用 `simple_browser` 工具。该工具支持以下函数:\n`search(query: str, recency_days: int)`:使用搜索引擎进行查询并显示结果,可以使用 `recency_days` 参数控制搜索内容的时效性。\n`mclick(ids: list[int])`:获取一系列指定 id 的页面内容。每次调用时,须选择3-10个页面。选择多个角度的页面,同时尽可能选择可信任的信息来源。考虑到部分页面是无法加载的,你也可以多打开一些可能有用的页面而不用担心内容过多。\n`open_url(url: str)`:打开指定的 URL。\n\n使用 `【{引用 id}†{引用文本}】` 来引用内容。\n\n操作步骤:1. 使用 `search` 来获得信息列表; 2. 使用 `mclick` 来获取指定 ID 页面的内容; 3. 根据获得的内容进行回复。在回复中应当引用信息来源。\n 如果用户提供了 URL,也可以用 `open_url` 直接打开页面。\n如果初次搜索结果没有找到合适的信息,也可以再次使用 `search` 进行搜索。" elif tool["type"] == "cogview": content += "\n\n## cogview\n\n如果用户的请求中包含了对图像的描述,你可以使用 `cogview` 来生成图像并展示给用户。你需要向 `cogview` 发送图像描述,规则:\n- 发送给 `cogview` 的消息必须使用英语。用户的中文描述必须完全翻译为英语。\n- 应当尽可能详细地描述图像生成的需求,需求描述约 100 英文单词。\n- 保持用户原始描述的意图。不要虚构内容或者没见过的人物。\n- 如无特殊说明,所在地为中国,持有中国立场并遵循中国社会主义价值观。" else: raise NotImplementedError( f"Unknown tool type {tool['type']}") input = self.build_single_message("system", "", content, tokenize=tokenize) if tokenize: input_ids.extend(input) else: input_message += input if item["content"]: input = self.build_single_message(item["role"], item.get("metadata", ""), item["content"], tokenize=tokenize) if tokenize: input_ids.extend(input) else: input_message += input if add_generation_prompt: if tokenize: input_ids.extend( [self.convert_tokens_to_ids("<|assistant|>")]) else: input_message += "<|assistant|>" return input_ids if tokenize else input_message # Main logic to handle different conversation formats if isinstance(conversation, list) and all( isinstance(i, dict) for i in conversation): result = handle_single_conversation(conversation) elif isinstance(conversation, list) and all( isinstance(i, list) for i in conversation): result = [handle_single_conversation(c) for c in conversation] elif hasattr(conversation, "messages"): result = handle_single_conversation(conversation.messages) else: raise ValueError("Invalid conversation format") if tokenize: output = self.batch_encode_plus( [result] if isinstance(result[0], int) else result, padding=padding, truncation=truncation, max_length=max_length, return_tensors=return_tensors, is_split_into_words=True, add_special_tokens=False) if return_dict: return output else: return output["input_ids"] else: return result def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ prefix_tokens = self.get_prefix_tokens() token_ids_0 = prefix_tokens + token_ids_0 if token_ids_1 is not None: token_ids_0 = token_ids_0 + token_ids_1 + [ self.convert_tokens_to_ids("") ] return token_ids_0 def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, padding_side: str = "left", # Fix for new transformers ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults assert self.padding_side == "left" required_input = encoded_inputs[self.model_input_names[0]] seq_length = len(required_input) if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and ( max_length % pad_to_multiple_of != 0): max_length = ( (max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len( required_input) != max_length # Initialize attention mask if not present. if "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * seq_length if "position_ids" not in encoded_inputs: encoded_inputs["position_ids"] = list(range(seq_length)) if needs_to_be_padded: difference = max_length - len(required_input) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = [ 0 ] * difference + encoded_inputs["attention_mask"] if "position_ids" in encoded_inputs: encoded_inputs["position_ids"] = [ 0 ] * difference + encoded_inputs["position_ids"] encoded_inputs[self.model_input_names[ 0]] = [self.pad_token_id] * difference + required_input return encoded_inputs