/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include "tensorrt_llm/common/assert.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/kernels/quantization.h" #include "tensorrt_llm/runtime/ipcUtils.h" namespace tensorrt_llm::kernels::ar_fusion { static constexpr int kElemsPerAccess = 8; static constexpr int kOneShotMaxToken = 128; static constexpr int kBarrierFlagCount = 256; // DS R1 // pattern1: AR+Add_RMS+Quant // [m, 7168] bf16 allreduce_in, [m, 7168] bf16 residual_in // [m, 7168] bf16 residual_out, [m, 7168] fp4 quant_out // pattern2: AR+AddRMS // [m, 7168] bf16 allreduce_in, [m, 7168] bf16 residual_in // [m, 7168] bf16 norm_out struct AllReduceFusionParams { int nranks; int rank; nvinfer1::DataType dtype; // size = token_num * hidden_dim int size; int hidden_dim; void** workspace; void* allreduce_in; void* residual_in; void* residual_out; void* norm_out; void* quant_out; void* scale_out; void* rms_gamma; float rms_eps; float* scale_factor; FP4QuantizationSFLayout layout = FP4QuantizationSFLayout::SWIZZLED; cudaStream_t stream; }; void allreduce_fusion_op(AllReduceFusionParams const& params); class Workspace { public: Workspace(int rank, int tp_size, int max_token_num, int hidden_dim, std::shared_ptr stream_ptr); ~Workspace(); void** get_workspace(); private: tensorrt_llm::runtime::WorldConfig m_world_config; std::shared_ptr m_buffer_mgr; std::vector m_ipc_mem_handles; void* m_workspace; std::shared_ptr m_cuda_stream; void* m_flag_d_ptr; }; void lamport_initialize(void* ptr, int bytes, cudaStream_t stream); ///////////////////////////////////////////////////////////////// // * MoE Reduction Fusion * // ///////////////////////////////////////////////////////////////// // Fuse MoE Reduction before AR + RMS // pattern1: MoE Reduction + Add Residual + AR + ADD_RMS + Quant // pattern2: MoE Reduction + Add Residual + AR + ADD_RMS // [device_num_experts, m, 7168] bf16 moe_reduction_active_experts_token_input // [m, 7168] bf16 moe_reduction_token_input // [device_num_experts, m] moe_reduction_scale_input struct MoeReductionAllReduceFusionParams : public AllReduceFusionParams { // * moe reduction specific params // Refer to kernel implementation on layout of those params // number of active experts on current device int* moe_reduction_device_num_experts = nullptr; // per token per expert fp32 scale float* moe_reduction_scale_input = nullptr; // per token per expert input void* moe_reduction_active_experts_token_input = nullptr; // per token input void* moe_reduction_token_input = nullptr; }; void moereduction_allreduce_fusion_op(MoeReductionAllReduceFusionParams const& params); } // namespace tensorrt_llm::kernels::ar_fusion