# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from itertools import product import pytest # isort: off import torch # isort: on import os import sys from cuda import cudart from parameterized import parameterized import tensorrt_llm as tllm from tensorrt_llm import Mapping, Tensor from tensorrt_llm.functional import (AllReduceConfig, AllReduceFusionOp, AllReduceParams, AllReduceStrategy, allreduce) from tensorrt_llm.plugin.plugin import (current_all_reduce_helper, init_all_reduce_helper) sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func def rms_norm(x: torch.Tensor, weight: torch.Tensor = None, eps: float = 1e-6): y = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) if weight is not None: y = y * weight return y class TestCommunicationPlugin(unittest.TestCase): def setUp(self): torch.manual_seed(20240603) torch.cuda.manual_seed(20240603) tllm.logger.set_level('error') self.world_size = tllm.mpi_world_size() self.rank = tllm.mpi_rank() torch.cuda.set_device(self.rank) cudart.cudaSetDevice(self.rank) self.reference_tensors = [ torch.full([10000000], i + 1, dtype=torch.float32, device="cuda") for i in range(self.world_size) ] self.mapping = Mapping(self.world_size, self.rank, self.world_size, tp_size=self.world_size) @parameterized.expand(list( product(['bfloat16', 'float16'], [ AllReduceStrategy.NCCL, AllReduceStrategy.ONESHOT, AllReduceStrategy.TWOSHOT ], [AllReduceConfig(0)], [1, 4, 16, 64], [4096, 8192, 12288])), name_func=unittest_name_func) def test_allreduce(self, dtype: str, strategy: AllReduceStrategy, config: AllReduceConfig, token_num: int, hidden_size: int): if self.world_size == 1: pytest.skip("Skip single GPU NCCL") if strategy == AllReduceStrategy.NCCL and config != AllReduceConfig(0): pytest.skip("NCCL with specific config discarded") size = token_num * hidden_size workspace = None torch_dtype = tllm._utils.str_dtype_to_torch(dtype) dtype_size = torch.finfo(torch_dtype).bits // 8 allreduce_ref = torch.zeros(self.reference_tensors[0][:size].shape, dtype=torch_dtype, device="cuda").reshape( token_num, hidden_size) residual = torch.rand(allreduce_ref.shape, dtype=torch_dtype, device="cuda") weight = torch.rand((1, hidden_size), dtype=torch_dtype, device="cuda") bias = torch.rand((1, hidden_size), dtype=torch_dtype, device="cuda") eps = 1e-6 for i in range(self.world_size): allreduce_ref = allreduce_ref + self.reference_tensors[i][:size].to( torch_dtype).reshape(token_num, hidden_size) allreduce_ref = allreduce_ref + bias + residual allreduce_ref = rms_norm(allreduce_ref, weight, eps) builder = tllm.Builder() net = builder.create_network() net.plugin_config.set_nccl_plugin(dtype) init_all_reduce_helper() _, workspace = current_all_reduce_helper().allocate_workspace( self.mapping, size * dtype_size) input = self.reference_tensors[self.rank][:size].to( torch_dtype).reshape(token_num, hidden_size) with tllm.net_guard(net): tllm.default_trtnet() x = Tensor(name='x', shape=input.shape, dtype=tllm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=bias.shape, dtype=tllm.str_dtype_to_trt(dtype)) z = Tensor(name='z', shape=residual.shape, dtype=tllm.str_dtype_to_trt(dtype)) w = Tensor(name='w', shape=weight.shape, dtype=tllm.str_dtype_to_trt(dtype)) current_all_reduce_helper().set_workspace_tensor(self.mapping) current = x current, z = allreduce( current, self.mapping.tp_group, all_reduce_params=AllReduceParams( strategy=strategy, config=config, fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM, bias=y, residual=z, norm_weight=w, eps=eps), ) current.mark_output('output', dtype) feed_dict = { 'x': input, 'y': bias, 'z': residual, 'w': weight, 'all_reduce_workspace': workspace } session = create_session(builder, net, precision=dtype) outputs = run_session(session, feed_dict) close = torch.isclose(allreduce_ref, outputs['output'], rtol=1e-2, atol=1e-3) if not torch.all(close): not_close_a = allreduce_ref[~close] not_close_b = outputs['output'][~close] print("rank {}, \n{}\n{}".format(self.rank, allreduce_ref, outputs['output'])) print("mismatch value:") print("ref:", not_close_a) print("output:", not_close_b) self.assertTrue( torch.allclose(outputs['output'].cpu(), allreduce_ref.cpu(), rtol=1e-2, atol=1e-3)) if __name__ == "__main__": unittest.main()