# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from itertools import product import numpy as np import torch from parameterized import parameterized import tensorrt_llm sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session class TestArange(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_arange_int(self): # test data start = 0 end = 128 # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): output = tensorrt_llm.functional.arange(start=start, end=end, dtype="int32") output.mark_output('output', "int32") # trt run inputs = {} session = create_session(builder, network, precision="float32") outputs = run_session(session, inputs) ref = torch.arange(start, end).int().cuda() torch.testing.assert_close(outputs['output'], ref) @parameterized.expand( list( product(['int32', 'int64'], ['int32', 'int64'], ['int32', 'int64', 'float32', 'float16']))) def test_arange_tensor(self, s_dtype='int32', e_dtype='int32', r_dtype='int32'): # test data s = 0 e = 128 s_np_dtype = tensorrt_llm._utils.str_dtype_to_np(s_dtype) e_np_dtype = tensorrt_llm._utils.str_dtype_to_np(e_dtype) # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): start = tensorrt_llm.functional.constant( np.array(s, dtype=s_np_dtype)) end = tensorrt_llm.functional.constant( np.array([e], dtype=e_np_dtype)) output = tensorrt_llm.functional.arange(start=start, end=end, dtype=r_dtype) output.mark_output('output', r_dtype) # trt run inputs = {} session = create_session( builder, network, precision="float32" if r_dtype != 'float16' else 'float16') outputs = run_session(session, inputs) # pytorch run ref = torch.arange( s, e, dtype=tensorrt_llm.str_dtype_to_torch(r_dtype)).cuda() # compare diff torch.testing.assert_close(outputs['output'], ref)