# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from itertools import product import torch from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func class TestCumsum(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([ ('int32', (256, ), 0), ('int32', (256, ), -1), ('float32', (3, 16), 0), ('float32', (3, 16), 1), ('float32', (3, 16), -2), ('float16', (5, 6, 8), 1), ('float16', (5, 6, 8), 2), ('float16', (5, 6, 8), -3), ('float32', (1, 512), -1), ('float16', (3, 5, 5, 6), -1), ('int32', (1, 33), -1), ('int32', (1, 65), -1), ('float32', (1, 50000), -1), ('float32', (1, 2, 50000), -1), ('float32', (3, 5, 5, 50000), -1), ], name_func=unittest_name_func) def test_cumsum(self, dtype, x_shape, dim): torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype) if 'float' in dtype: x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda") else: x_data = torch.randint(-100, 100, x_shape, dtype=torch_dtype, device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.cumsum(x, dim=dim) output.mark_output('output', dtype) # trt run session = create_session( builder, network, precision='float32' if 'int32' in dtype else dtype) inputs = { 'x': x_data, } outputs = run_session(session, inputs) # pytorch run ref = torch.cumsum(x_data, dim=dim).to(torch_dtype) # compare diff tols = { "float32": { "rtol": 1e-05, "atol": 1e-05 }, "float16": { "rtol": 1e-02, "atol": 1e-02 }, "int32": { "rtol": 0, "atol": 0 }, } torch.testing.assert_close(outputs['output'], ref, **tols[dtype]) @parameterized.expand( list( product(['float32', 'float16', 'int32'], [(256, ), (3, 16), (5, 6, 8)], [True, False])) + list(product(['float32'], [(3, 5, 5, 50000)], [True])), # False seems to be running into a TRT bug name_func=unittest_name_func) def test_cumsum_dynamic_last_dim(self, dtype, x_shape, prefer_plugin=True): dim = -1 torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype) if 'float' in dtype: x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda") else: x_data = torch.randint(-100, 100, x_shape, dtype=torch_dtype, device="cuda") shape_except_last_dim = list(x_data.shape[:-1]) last_dim_size = x_data.shape[-1] assert last_dim_size >= 1 builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor( name='x', shape=shape_except_last_dim + [-1], # last dim dynamic dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.cumsum(x, dim=dim, prefer_plugin=prefer_plugin) output.mark_output('output', dtype) # needs profile for dynamic shape profile = builder.trt_builder.create_optimization_profile() profile.set_shape('x', shape_except_last_dim + [1], shape_except_last_dim + [last_dim_size], shape_except_last_dim + [last_dim_size * 2]) session = create_session( builder, network, precision='float32' if 'int32' in dtype else dtype, optimization_profiles=[profile]) inputs = {'x': x_data} outputs = run_session(session, inputs) ref = torch.cumsum(x_data, dim=dim).to(torch_dtype) # compare diff tols = { "float32": { "rtol": 1e-05, "atol": 1e-05 }, "float16": { "rtol": 1e-02, "atol": 1e-02 }, "int32": { "rtol": 0, "atol": 0 }, } torch.testing.assert_close(outputs['output'], ref, **tols[dtype])