# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import torch import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session class TestEinsum(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_einsum(self): dtype = 'float32' # test data x_shape = (12, 12, 96, 96) y_shape = (12, 12, 96, 64) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") y_data = torch.rand(y_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") equation = 'bnth,bnhs->bnts' # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=y_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.einsum(equation, [x, y]) output.mark_output('output', dtype) # trt run session = create_session(builder, network, precision=dtype) inputs = {'x': x_data, 'y': y_data} outputs = run_session(session, inputs) # pytorch run ref = torch.functional.einsum(equation, [x_data, y_data]) # compare diff torch.testing.assert_close(outputs['output'], ref, atol=5e-3, rtol=2e-4)