# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import torch from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func class TestEmbedding(unittest.TestCase): def setUp(self): torch.random.manual_seed(0) tensorrt_llm.logger.set_level('error') @parameterized.expand([('float32', ), ('float16', )], name_func=unittest_name_func) def test_embedding(self, dtype): # meta data batch_size = 10 vocab_size = 1000 n_embed = 1024 # test data ## input index index_shape = (batch_size, ) index_data = torch.randint(0, vocab_size, index_shape, dtype=torch.int32, device="cuda") ## weight data weight_data = torch.rand(vocab_size, n_embed, dtype=tensorrt_llm.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): index = Tensor(name='index', shape=index_data.shape, dtype=tensorrt_llm.str_dtype_to_trt('int32')) weight = Tensor(name='weight', shape=weight_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.embedding(input=index, weight=weight) output.mark_output('output', dtype) # trt run session = create_session(builder, network, precision=dtype) inputs = { 'index': index_data, 'weight': weight_data, } outputs = run_session(session, inputs) # pytorch run embedding = torch.nn.Embedding.from_pretrained(weight_data) ref = embedding(index_data) # compare diff torch.testing.assert_close(ref, outputs['output'])