# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np # isort: off import torch # isort: on from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_flatten_1(self): # test data dtype = 'float32' input_shape = (2, 3, 4, 5) start_dim = 0 end_dim = -1 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = input.flatten(start_dim, end_dim).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run ref = input_data.flatten(start_dim, end_dim) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_flatten_2(self): # test data dtype = 'float32' input_shape = (2, 3, 4, 5) start_dim = 0 end_dim = 3 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = input.flatten(start_dim, end_dim).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run ref = input_data.flatten(start_dim, end_dim) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_flatten_3(self): # test data dtype = 'float32' input_shape = (2, 3, 4, 5) start_dim = 0 end_dim = 2 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = input.flatten(start_dim, end_dim).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run ref = input_data.flatten(start_dim, end_dim) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_flatten_4(self): # test data dtype = 'float32' input_shape = (2, 3, 4, 5) start_dim = 1 end_dim = 3 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = input.flatten(start_dim, end_dim).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run ref = input_data.flatten(start_dim, end_dim) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_flatten_5(self): # test data dtype = 'float32' input_shape = (2, 3, 4, 5) start_dim = 1 end_dim = 2 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = input.flatten(start_dim, end_dim).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run ref = input_data.flatten(start_dim, end_dim) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) def test_flatten_6(self): # test data dtype = 'float32' input_shape = (2, 3, 4, 5) start_dim = 2 end_dim = 2 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = input.flatten(start_dim, end_dim).trt_tensor output.name = 'output' network.mark_output(output) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run ref = input_data.flatten(start_dim, end_dim) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'])