# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from itertools import product import torch from parameterized import parameterized import tensorrt_llm import tensorrt_llm.quantization.layers from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), "..")) from modelopt.torch.quantization.qtensor import NVFP4QTensor from utils.util import skip_pre_blackwell_unittest, unittest_name_func import tensorrt_llm.quantization.functional def random_quantized_tensor(shape, dtype, block_size): raw = torch.rand(shape, dtype=dtype) quantized, block_sf, global_sf = NVFP4QTensor.quantize( raw, block_size=block_size) return raw, quantized, block_sf, global_sf class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level("warning") @parameterized.expand( list( product([1, 4, 32, 128, 1023], [512, 1024, 2048], ["float16"], [16])), name_func=unittest_name_func, ) @skip_pre_blackwell_unittest def test_nvfp4_qdq(self, batch_size, hidden_size, input_dtype, block_size): torch_dtype = tensorrt_llm.str_dtype_to_torch(input_dtype) raw, quantized, block_sf, global_sf = random_quantized_tensor( (batch_size, hidden_size), torch_dtype, block_size) builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): input = Tensor(shape=(batch_size, hidden_size), dtype=input_dtype, name="input") global_sf_tensor = tensorrt_llm.functional.constant( global_sf.cpu().numpy()) quantized_tensor, block_sf_tensor = ( tensorrt_llm.quantization.functional.dynamic_quantize( input, global_sf_tensor, block_size=block_size)) dequantized_tensor = tensorrt_llm.quantization.functional.block_double_dequantize( quantized_tensor, block_sf_tensor, global_sf_tensor, dtype="float32") output = dequantized_tensor.cast(input_dtype) output.mark_output("output") output_buffer = torch.zeros_like(raw) stream = torch.cuda.current_stream() builder_config = builder.create_builder_config(precision=input_dtype) engine = builder.build_engine(net, builder_config) session = tensorrt_llm.runtime.Session.from_serialized_engine(engine) session.run( inputs={"input": raw}, outputs={"output": output_buffer}, stream=stream.cuda_stream, ) torch.cuda.synchronize() ref_dequantized = quantized.dequantize( torch_dtype, scale=block_sf.float(), double_scale=global_sf, block_sizes=[16], ) assert torch.allclose(output_buffer, ref_dequantized) @parameterized.expand( list( product([1, 16, 128, 1023], [512, 1024], [256, 2048], ["float16"], [16])), name_func=unittest_name_func, ) @skip_pre_blackwell_unittest def test_nvfp4_gemm_ootb(self, batch_size, input_hidden_size, output_hidden_size, input_dtype, block_size): torch_dtype = tensorrt_llm.str_dtype_to_torch(input_dtype) input_raw, input_quantized, input_block_sf, input_global_sf = ( random_quantized_tensor((batch_size, input_hidden_size), torch_dtype, block_size)) weight_raw, weight_quantized, weight_block_sf, weight_global_sf = ( random_quantized_tensor((output_hidden_size, input_hidden_size), torch_dtype, block_size)) bias_raw = torch.rand(output_hidden_size, dtype=torch_dtype) linear = tensorrt_llm.quantization.layers.FP4Linear(input_hidden_size, output_hidden_size, dtype=input_dtype) linear.weight.value = weight_quantized._quantized_data linear.weights_block_scaling_factor.value = weight_block_sf linear.weights_global_scaling_factor.value = weight_global_sf linear.activation_global_scaling_factor.value = input_global_sf linear.bias.value = bias_raw builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): input = Tensor(shape=(batch_size, input_hidden_size), dtype=input_dtype, name="input") output = linear(input) output.mark_output("output") output_buffer = torch.zeros((batch_size, output_hidden_size), dtype=torch_dtype) stream = torch.cuda.current_stream() builder_config = builder.create_builder_config(precision=input_dtype) engine = builder.build_engine(net, builder_config) session = tensorrt_llm.runtime.Session.from_serialized_engine(engine) session.run( inputs={"input": input_raw}, outputs={"output": output_buffer}, stream=stream.cuda_stream, ) torch.cuda.synchronize() ref_input = input_quantized.dequantize( torch_dtype, scale=input_block_sf.float(), double_scale=input_global_sf, block_sizes=[16], ) ref_weight = weight_quantized.dequantize( torch_dtype, scale=weight_block_sf.float(), double_scale=weight_global_sf, block_sizes=[16], ) ref_output = torch.nn.functional.linear(ref_input, ref_weight, bias_raw) assert torch.allclose(output_buffer, ref_output, atol=1e-3, rtol=1e-3) if __name__ == "__main__": unittest.main()