# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import os import sys import unittest import torch from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import (create_session, run_session, skip_bf16_pre_ampere, unittest_name_func) class TestGelu(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @staticmethod def gelu(x, dtype): if dtype == 'float32': res = torch.nn.functional.gelu(x) else: res = 0.5 * x * (1 + torch.tanh( math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) return res @parameterized.expand(('float32', 'float16', 'bfloat16'), name_func=unittest_name_func) def test_gelu(self, dtype): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) torch_dtype = tensorrt_llm._utils.str_dtype_to_torch(dtype) x_shape = (12, 12, 96, 96) x_data = torch.rand(x_shape, dtype=torch_dtype, device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.gelu(x) output.mark_output('output', dtype) # trt run session = create_session(builder, network, precision=dtype) inputs = { 'x': x_data, } outputs = run_session(session, inputs) # pytorch run ref = self.gelu(x_data, dtype).to(torch_dtype) # compare diff if dtype == 'bfloat16': atol, rtol = 1e-5, 2e-2 else: atol, rtol = 1e-5, 2e-3 torch.testing.assert_close(outputs['output'], ref, atol=atol, rtol=rtol)