# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from itertools import product # isort: off import torch # isort: on from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func class TestLogSoftmax(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_lt(self): dtype = 'float32' t_shape = (2, 3) x_data = torch.rand(t_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") y_data = torch.rand(t_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=t_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='y', shape=t_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.lt(x, y) output.mark_output('output') # trt run session = create_session(builder, network, precision=dtype) inputs = {'x': x_data, 'y': y_data} outputs = run_session(session, inputs) # pytorch run ref = torch.lt(x_data, y_data) # compare diff torch.testing.assert_close(ref, outputs['output']) @parameterized.expand(list(product(['float32']))) def test_log(self, dtype): # test data x_shape = (4, 6, 8) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.log(x) output.mark_output('output') # trt run session = create_session(builder, network, precision=dtype) inputs = { 'x': x_data, } outputs = run_session(session, inputs) # pytorch run ref = x_data.log() # compare diff torch.testing.assert_close(ref, outputs['output']) @parameterized.expand(list(product(['float32'], [0, 1, 2], [False, True])), name_func=unittest_name_func) def test_sum(self, dtype, dim, keepdim): # test data x_shape = (4, 6, 8) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.sum(x, dim, keepdim) output.mark_output('output') # trt run session = create_session(builder, network, precision=dtype) inputs = { 'x': x_data, } outputs = run_session(session, inputs) # pytorch run ref = x_data.sum(dim=dim, keepdim=keepdim) # compare diff torch.testing.assert_close(ref, outputs['output']) @parameterized.expand(list(product(['float32'], [0, 1, 2])), name_func=unittest_name_func) def test_log_softmax(self, dtype, dim): # test data x_shape = (4, 6, 8) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.log_softmax(x, dim=dim) output.mark_output('output') # trt run session = create_session(builder, network, precision=dtype) inputs = { 'x': x_data, } outputs = run_session(session, inputs) # pytorch run ref = x_data.log_softmax(dim=dim) # compare diff torch.testing.assert_close(ref, outputs['output'])