# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import numpy as np import torch from parameterized import parameterized from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import unittest_name_func class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([ ('int32', (1, ), (1, )), ('int32', (256, ), ()), ('int32', (256, ), (1, )), ('float32', (3, 16), (3, 1)), ('float32', (3, 16), (1, 16)), ('float32', (3, 16), (3, 16)), ('float16', (5, 6, 8), (5, 6, 1)), ('float16', (5, 6, 8), (5, 1, 8)), ('float16', (5, 6, 8), (6, 8)), ], name_func=unittest_name_func) def test_masked_select(self, dtype, input_shape, mask_shape): if 'float' in dtype: input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) else: input_data = torch.randint( -100, 100, input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) mask_data = torch.randint(2, mask_shape).to(torch.bool) builder = tensorrt_llm.Builder() builder.strongly_typed = False # Test need to run in weekly typed mode net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='input', shape=input_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) y = Tensor(name='mask', shape=mask_data.shape, dtype=tensorrt_llm.str_dtype_to_trt('bool')) output = tensorrt_llm.functional.masked_select(x, y).trt_tensor output.name = 'output' network.mark_output(output) build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(fp16=(dtype == 'float16'))) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), 'mask': mask_data.numpy() }) ref = torch.masked_select(input_data.cuda(), mask_data.cuda()) np.testing.assert_allclose(ref.cpu().numpy(), outputs['output'], atol=1e-5)