# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np # isort: off import torch # isort: on from parameterized import parameterized from polygraphy.backend.trt import (CreateConfig, EngineFromNetwork, Profile, TrtRunner) import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([ ((4, ), ), ((4, 2), ), ((0, 4, 2), ), ]) def test_nonzero(self, x_shape): # test data # x_shape = (4, 4) x_shape_last = list(x_shape[1:]) x_data = torch.randint(2, size=x_shape, dtype=torch.int32).bool() print(x_data) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=[-1] + x_shape_last, dtype=tensorrt_llm.torch_dtype_to_trt(x_data.dtype)) output = tensorrt_llm.functional.nonzero(x).trt_tensor output.name = 'output' network.mark_output(output) # trt run # needs profile for dynamic shape profiles = Profile().add('x', [0] + x_shape_last, [2] + x_shape_last, [32] + x_shape_last) build_engine = EngineFromNetwork( (builder.trt_builder, net.trt_network), config=CreateConfig(profiles=[profiles])) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'x': x_data.numpy(), }) print(outputs['output'].transpose()) # pytorch run # print(x_data.nonzero()) ref = x_data.nonzero().transpose(0, 1) # compare diff np.testing.assert_allclose(ref.cpu().numpy(), outputs['output']) return