# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest from itertools import product import torch from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import (create_session, run_session, skip_pre_blackwell_unittest, unittest_name_func) def float_tensor_to_e2m1_and_ufp8_scale(float_tensor: torch.Tensor, sf_vec_size, ufp8_type: int = 1): value_e2m1, scale_ufp8, rep_float = torch.ops.tensorrt_llm.float_to_e2m1_and_ufp8sf_scale( float_tensor, sf_vec_size, ufp8_type) return value_e2m1, scale_ufp8, rep_float def e2m1_and_ufp8_scale_to_float_tensor(e2m1_tensor: torch.Tensor, ufp8_scale_tensor: torch.Tensor, sf_vec_size, ufp8_type: int = 1): float_tensor = torch.ops.tensorrt_llm.e2m1_and_ufp8sf_scale_to_float( e2m1_tensor, ufp8_scale_tensor, sf_vec_size, ufp8_type) return float_tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand(list(product([4, 8], [16, 2048], ["fp8", "float16"])), name_func=unittest_name_func) @skip_pre_blackwell_unittest def test_fp4quant(self, M, N, input_type): torch.random.manual_seed(0) shape = [M, N] sf_vec_size = 16 input_type = "fp8" float_tensor = torch.randn(shape, dtype=torch.float32) e2m1_tensor, e8m0_sf_tensor, repr_float_tensor = float_tensor_to_e2m1_and_ufp8_scale( float_tensor, sf_vec_size) represented_float_tensor_ref = e2m1_and_ufp8_scale_to_float_tensor( e2m1_tensor, e8m0_sf_tensor, sf_vec_size) assert torch.equal(repr_float_tensor, represented_float_tensor_ref) fp8_tensor, _ = torch.ops.tensorrt_llm.quantize_e4m3_per_tensor( float_tensor) global_scale_factor = 448.0 / (float_tensor.abs().max() / 6.0).to("cuda") global_scale_factor = global_scale_factor.reshape(1) if input_type == "fp8": plugin_input = fp8_tensor.to("cuda").view(torch.float8_e4m3fn) elif input_type == "float16": plugin_input = float_tensor.to(torch.float16).to("cuda") builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): input_tensor = Tensor( name="input", shape=shape, dtype=tensorrt_llm.str_dtype_to_trt(input_type)) sf_scale_tensor_trt = Tensor( name="sf_scale", shape=(1, ), dtype=tensorrt_llm.str_dtype_to_trt("float32")) quantized_input, input_sf_tensor = tensorrt_llm.quantization.functional.quantize_to_fp4_tensor( input_tensor, sf_scale_tensor_trt) net._mark_output(quantized_input, 'quant_tensor', dtype=tensorrt_llm.str_dtype_to_trt("int64")) net._mark_output(input_sf_tensor, 'sf_tensor', dtype=tensorrt_llm.str_dtype_to_trt("int32")) inputs = { 'input': plugin_input, 'sf_scale': global_scale_factor, } session = create_session(builder, net, precision="float16") outputs = run_session(session, inputs) torch.cuda.synchronize() plugin_output_quant_tensor = torch.tensor( outputs["quant_tensor"].untyped_storage(), dtype=torch.int8).reshape(e2m1_tensor.shape) plugin_output_sf_tensor = torch.tensor( outputs["sf_tensor"].untyped_storage(), dtype=torch.uint8).reshape(e8m0_sf_tensor.shape) represented_float_tensor = e2m1_and_ufp8_scale_to_float_tensor( plugin_output_quant_tensor, e8m0_sf_tensor, sf_vec_size) cos_similarity_func = torch.nn.CosineSimilarity(dim=1, eps=1e-6) res = cos_similarity_func(represented_float_tensor, float_tensor) assert res.max() > 0.95