# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np # isort: off import torch # isort: on from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('warning') def ref_categorical_sample(self, probs: torch.Tensor): probs = probs / probs.sum(-1, keepdim=True) rand_data = torch.rand(probs.shape[0], dtype=probs.dtype, device=probs.device) cum_probs = probs.cumsum(-1) samples = (cum_probs >= rand_data.unsqueeze(1)).int().argmax(dim=-1) # print(samples) return samples # @unittest.skip("") def test_ref_sample(self): bs = 2 nbins = 10 probs = torch.rand((bs, nbins), dtype=torch.float32) scaled_probs = probs / probs.sum(-1, keepdim=True) print(scaled_probs) samples = [] reps = 20000 for _ in range(reps): samples.append(self.ref_categorical_sample(probs)) samples = torch.stack(samples).float() # print(samples[:, 0], samples[:, 1]) hist = [] bins = torch.arange(nbins + 1).float() for i in range(bs): h = torch.histogram(samples[:, i], bins=bins).hist h = h / h.sum(-1) hist.append(h) np.testing.assert_allclose(torch.stack(hist), scaled_probs, atol=1e-2) return def test_sample(self): # test data bs = 2 nbins = 10 probs = torch.rand((bs, nbins), dtype=torch.float32) scaled_probs = probs / probs.sum(-1, keepdim=True) print(scaled_probs) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() x = Tensor(name='x', shape=probs.shape, dtype=tensorrt_llm.torch_dtype_to_trt(probs.dtype)) # NOTE: we need rand() here since TRT rand() produces same numbers rand_data_t = Tensor(name='rand_data', shape=(bs, ), dtype=tensorrt_llm.torch_dtype_to_trt( torch.float32)) outputs = tensorrt_llm.functional.categorical_sample(x, rand_data_t) outputs.trt_tensor.name = 'output' network.mark_output(outputs.trt_tensor) # save onnx # model_path = 'sample.onnx' # to_onnx(net.trt_network, model_path) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) samples = [] nreps = 20000 with TrtRunner(build_engine) as runner: for _ in range(nreps): # NOTE: we need rand() here since TRT rand() produces same numbers rand_data = torch.rand((bs, ), dtype=torch.float32) outputs = runner.infer(feed_dict={ 'x': probs.numpy(), 'rand_data': rand_data.numpy(), }) # print(outputs) samples.append(torch.tensor(outputs['output'])) # assert False, "PARTIAL" samples = torch.stack(samples).float() print(samples) hist = [] bins = torch.arange(nbins + 1).float() for i in range(bs): h = torch.histogram(samples[:, i], bins=bins).hist h = h / h.sum(-1) hist.append(h) print(hist) # compare diff np.testing.assert_allclose(torch.stack(hist), scaled_probs, atol=1e-2) # assert False, "FORCED" return