# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np # isort: off import torch import tensorrt as trt # isort: on import os import sys from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([('float32', ), ('float16', )], name_func=unittest_name_func) def test_slice_explicit(self, dtype): # test data x_shape = (1, 256) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") starts_data = torch.tensor([0, 128]).int() sizes_data = torch.tensor([1, 1]).int() # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) starts = Tensor(name='starts', shape=(2, ), dtype=trt.int32) sizes = Tensor(name='sizes', shape=(2, ), dtype=trt.int32) output = tensorrt_llm.functional.slice(x, starts, sizes) output.mark_output('output') profile = builder.trt_builder.create_optimization_profile() profile.set_shape_input('starts', (0, 128), (0, 128), (0, 128)) profile.set_shape_input('sizes', (1, 1), (1, 1), (1, 1)) # trt run session = create_session(builder, network, precision=dtype, optimization_profiles=[profile]) inputs = {'x': x_data, 'starts': starts_data, 'sizes': sizes_data} outputs = run_session(session, inputs) # pytorch run ref = x_data[0:1, 128:129] # compare diff torch.testing.assert_close(ref, outputs['output']) def test_slice_implicit(self): dtype = 'float32' x_shape = (256, ) slice_length = 128 x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) starts = tensorrt_llm.functional.constant( np.array([0], dtype=np.int32)) output_length = tensorrt_llm.functional.constant( np.array([0] * slice_length, dtype=np.int32)) sizes = tensorrt_llm.functional.shape(output_length, 0) output = tensorrt_llm.functional.slice(x, starts, sizes.view([1])) output.mark_output('output') # trt run session = create_session(builder, network, precision=dtype) inputs = { 'x': x_data, } outputs = run_session(session, inputs) # pytorch run ref = x_data[0:slice_length] # compare diff torch.testing.assert_close(ref, outputs['output'])