# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import torch from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func class TestSplit(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') @parameterized.expand([ ('float32', 0, 4), ('float32', 1, 4), ('float32', -1, 4), ('float32', -2, 4), ('float16', 0, 4), ('float16', 1, 4), ('float16', -1, 4), ('float16', -2, 4), ('float32', 0, [2, 100, 26]), ('float32', 1, [2, 100, 100, 52, 2]), ('float32', -1, [2, 100, 100, 52, 2]), ('float32', -2, [2, 100, 26]), ('float16', 0, [2, 100, 26]), ('float16', 1, [2, 100, 100, 52, 2]), ('float16', -1, [2, 100, 100, 52, 2]), ('float16', -2, [2, 100, 26]), ], name_func=unittest_name_func) def test_split(self, dtype, dim, split_size_or_sections): # test data x_shape = (128, 256) x_data = torch.rand(x_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): x = Tensor(name='x', shape=x_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) outputs = tensorrt_llm.functional.split(x, split_size_or_sections, dim) for i in range(len(outputs)): outputs[i].mark_output(f'output_{i}') # trt run session = create_session(builder, network, precision=dtype) inputs = { 'x': x_data, } outputs = run_session(session, inputs) # pytorch run ref_outputs = torch.split(x_data, split_size_or_sections, dim) # compare diff assert len(outputs.keys()) == len(ref_outputs) for i in range(len(ref_outputs)): torch.testing.assert_close(ref_outputs[i], outputs[f'output_{i}'])