# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np # isort: off import torch # isort: on from polygraphy.backend.trt import EngineFromNetwork, TrtRunner import tensorrt_llm from tensorrt_llm import Tensor class TestFunctional(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_unbind_1(self): # test data dtype = 'float32' input_shape = (1, 2, 3) unbind_dim = 0 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) outputs = input.unbind(unbind_dim) for i in range(len(outputs)): outputs[i].name = f'output_{i}' network.mark_output(outputs[i].trt_tensor) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run refs = input_data.unbind(unbind_dim) # compare diff # compare diff for idx, ref in enumerate(refs): np.testing.assert_allclose(ref.cpu().numpy(), outputs[f'output_{idx}']) def test_unbind_1(self): # test data dtype = 'float32' input_shape = (1, 2, 3) unbind_dim = 1 input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype)) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): network = tensorrt_llm.default_trtnet() input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) outputs = input.unbind(unbind_dim) for i in range(len(outputs)): outputs[i].name = f'output_{i}' network.mark_output(outputs[i].trt_tensor) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={ 'input': input_data.numpy(), }) # pytorch run refs = input_data.unbind(unbind_dim) # compare diff # compare diff for idx, ref in enumerate(refs): np.testing.assert_allclose(ref.cpu().numpy(), outputs[f'output_{idx}'])