# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest # isort: off import torch import tensorrt as trt # isort: on import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session class TestView(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_view_static(self): # test data dtype = 'float32' input_shape = (4, 3) output_shape = (12, 1) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.view(input=input, shape=output_shape) output.mark_output('output') # trt run session = create_session(builder, network, precision=dtype) inputs = { 'input': input_data, } outputs = run_session(session, inputs) # pytorch run ref = input_data.view(output_shape) # compare diff torch.testing.assert_close(ref, outputs['output']) def test_view_dynamic(self): # test data dtype = 'float32' input_shape = (4, 3) output_shape = (2, 6) input_data = torch.rand( input_shape, dtype=tensorrt_llm._utils.str_dtype_to_torch(dtype), device="cuda") shape_data = torch.tensor(output_shape).int() # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): input = Tensor(name='input', shape=input_shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) shape = Tensor(name='shape', shape=(len(input_shape), ), dtype=trt.int32) output = tensorrt_llm.functional.view(input=input, shape=shape) output.mark_output('output') # trt run profile = builder.trt_builder.create_optimization_profile() profile.set_shape_input('shape', output_shape, output_shape, output_shape) session = create_session(builder, network, precision=dtype, optimization_profiles=[profile]) inputs = {'input': input_data, 'shape': shape_data} outputs = run_session(session, inputs) # pytorch run ref = input_data.view(output_shape) # compare diff torch.testing.assert_close(ref, outputs['output'])