# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import torch from parameterized import parameterized import tensorrt_llm from tensorrt_llm import Tensor sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import create_session, run_session, unittest_name_func class TestWhere(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('warning') @parameterized.expand([ (True, ), (False, ), ], name_func=unittest_name_func) def test_where_from_bool(self, condition): dtype = 'float32' t_data = torch.randn(2, 3, device="cuda") f_data = torch.randn(2, 3, device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): t = Tensor(name='t', shape=t_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) f = Tensor(name='f', shape=f_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) output = tensorrt_llm.functional.where(condition, t, f) output.mark_output('output') session = create_session(builder, network, precision=dtype) inputs = {'t': t_data, 'f': f_data} outputs = run_session(session, inputs) ref = torch.where(torch.tensor(condition).cuda(), t_data, f_data) torch.testing.assert_close(ref, outputs['output']) def test_where_from_tensor(self): dtype = 'float32' t_data = torch.randn(3, 4, device="cuda") f_data = torch.randn(3, 4, device="cuda") c_data = torch.randint(2, size=(3, 1), dtype=torch.bool, device="cuda") # construct trt network builder = tensorrt_llm.Builder() network = builder.create_network() with tensorrt_llm.net_guard(network): t = Tensor(name='t', shape=t_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) f = Tensor(name='f', shape=f_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) c = Tensor(name='c', shape=c_data.shape, dtype=tensorrt_llm.str_dtype_to_trt('bool')) output = tensorrt_llm.functional.where(c, t, f) output.mark_output('output') # trt run session = create_session(builder, network, precision=dtype) inputs = {'t': t_data, 'f': f_data, 'c': c_data} outputs = run_session(session, inputs) # pytorch run ref = torch.where(c_data, t_data, f_data) # compare diff torch.testing.assert_close(ref, outputs['output'])