# Adapted from # https://github.com/vllm-project/vllm/blob/aae6927be06dedbda39c6b0c30f6aa3242b84388/tests/entrypoints/openai/test_chat.py import os import sys from typing import List import numpy as np import openai import pytest from openai_server import RemoteOpenAIServer sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from test_llm import get_model_path @pytest.fixture(scope="module") def model_name(): return "llama-models-v2/TinyLlama-1.1B-Chat-v1.0" @pytest.fixture(scope="module", params=[None, 'pytorch']) def backend(request): return request.param @pytest.fixture(scope="module") def server(model_name: str, backend: str): model_path = get_model_path(model_name) if backend == "pytorch": args = ["--backend", f"{backend}"] else: args = ["--max_beam_width", "4"] with RemoteOpenAIServer(model_path, args) as remote_server: yield remote_server @pytest.fixture(scope="module") def client(server: RemoteOpenAIServer): return server.get_client() @pytest.fixture(scope="module") def async_client(server: RemoteOpenAIServer): return server.get_async_client() def test_single_chat_session(client: openai.OpenAI, model_name: str): messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] chat_completion = client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, logprobs=False, ) assert chat_completion.id is not None assert len(chat_completion.choices) == 1 message = chat_completion.choices[0].message assert message.content is not None assert message.role == "assistant" # test finish_reason completion_tokens = chat_completion.usage.completion_tokens if chat_completion.choices[0].finish_reason == "length": assert completion_tokens == 10 elif chat_completion.choices[0].finish_reason == "stop": assert completion_tokens <= 10 else: raise RuntimeError("finish_reason not in [length, stop]") def test_single_chat_session_with_logprobs(client: openai.OpenAI, model_name: str, backend: str): if backend == "pytorch": pytest.skip("Logprobs are not supported in PyTorch backend yet") messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] chat_completion = client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, logprobs=True, ) assert chat_completion.id is not None assert len(chat_completion.choices) == 1 message = chat_completion.choices[0].message assert message.content is not None assert message.role == "assistant" # test logprobs logprobs = chat_completion.choices[0].logprobs.content if chat_completion.choices[0].finish_reason == "length": assert len(logprobs) == 10 elif chat_completion.choices[0].finish_reason == "stop": assert len(logprobs) <= 10 else: raise RuntimeError("finish_reason not in [length, stop]") for logprob in logprobs: assert logprob.token is not None assert logprob.logprob is not None assert logprob.bytes is not None assert len(logprob.top_logprobs) == 0 def test_multi_turn_dialogue(client: openai.OpenAI, model_name: str): # test multi-turn dialogue messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] messages.append({"role": "assistant", "content": "2"}) messages.append({"role": "user", "content": "express your result in json"}) chat_completion = client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, ) message = chat_completion.choices[0].message assert message.content is not None and len(message.content) >= 0 def test_beam_search(client: openai.OpenAI, model_name: str, backend: str): if backend == "pytorch": pytest.skip("Beam search is not supported in PyTorch backend yet") messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] chat_completion = client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, n=2, temperature=0.0, extra_body=dict(use_beam_search=True), ) assert len(chat_completion.choices) == 2 assert chat_completion.choices[ 0].message.content != chat_completion.choices[ 1].message.content, "beam search should be different" @pytest.mark.asyncio(loop_scope="module") async def test_chat_streaming(async_client: openai.AsyncOpenAI, model_name: str): messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] chat_completion = await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, logprobs=False, ) output = chat_completion.choices[0].message.content _finish_reason = chat_completion.choices[0].finish_reason # test streaming stream = await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, logprobs=False, stream=True, ) str_chunks: List[str] = [] finish_reason_counter = 0 finish_reason: str = None async for chunk in stream: choice = chunk.choices[0] delta = choice.delta if choice.finish_reason is not None: finish_reason_counter += 1 finish_reason = choice.finish_reason if delta.role: assert delta.role == "assistant" if delta.content: str_chunks.append(delta.content) # test finish_reason if delta.content == "": assert finish_reason == "stop" assert finish_reason_counter == 1 assert finish_reason == _finish_reason num_tokens = len(str_chunks) if finish_reason == "length": assert num_tokens == 10 elif finish_reason == "stop": assert num_tokens <= 10 else: raise RuntimeError("finish_reason not in [length, stop]") # test generated tokens assert "".join(str_chunks) == output @pytest.mark.asyncio(loop_scope="module") async def test_chat_streaming_with_logprobs(async_client: openai.AsyncOpenAI, model_name: str, backend: str): if backend == "pytorch": pytest.skip("Logprobs are not supported in PyTorch backend yet") messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is 1+1?" }] chat_completion = await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, logprobs=True, ) output = chat_completion.choices[0].message.content logprobs = [ logprob_content.logprob for logprob_content in chat_completion.choices[0].logprobs.content ] _finish_reason = chat_completion.choices[0].finish_reason # test streaming stream = await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, logprobs=True, stream=True, ) str_chunks: List[str] = [] logprob_chunks: List[float] = [] finish_reason_counter = 0 finish_reason: str = None async for chunk in stream: choice = chunk.choices[0] delta = choice.delta if logprob_chunk := choice.logprobs: if len(logprob_chunk.content) == 1: assert logprob_chunk.content[0].top_logprobs is None logprob_chunks.append(logprob_chunk.content[0].logprob) elif len(logprob_chunk.content) == 0: assert delta.content == "" else: raise RuntimeError("logprobs streaming error") if choice.finish_reason is not None: finish_reason_counter += 1 finish_reason = choice.finish_reason if delta.role: assert delta.role == "assistant" if delta.content: str_chunks.append(delta.content) # test finish_reason if delta.content == "": assert finish_reason == "stop" assert finish_reason_counter == 1 assert finish_reason == _finish_reason num_tokens = len(str_chunks) if finish_reason == "length": assert num_tokens == 10 elif finish_reason == "stop": assert num_tokens <= 10 else: raise RuntimeError("finish_reason not in [length, stop]") # test generated tokens assert "".join(str_chunks) == output # test logprobs assert len(logprob_chunks) == len(logprobs) logprobs, logprob_chunks = np.array(logprobs), np.array(logprob_chunks) assert np.allclose(logprobs, logprob_chunks) @pytest.mark.asyncio(loop_scope="module") async def test_chat_completion_stream_options(async_client: openai.AsyncOpenAI, model_name: str): messages = [{ "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "What is the capital of France?" }] # Test stream=True, stream_options={"include_usage": False} stream = await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, stream=True, stream_options={"include_usage": False}) async for chunk in stream: assert chunk.usage is None # Test stream=True, stream_options={"include_usage": True, # "continuous_usage_stats": False}} stream = await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, stream=True, stream_options={ "include_usage": True, "continuous_usage_stats": False }) async for chunk in stream: if chunk.choices: assert chunk.usage is None else: assert chunk.usage is not None assert chunk.usage.prompt_tokens > 0 assert chunk.usage.completion_tokens > 0 assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens + chunk.usage.completion_tokens) assert chunk.choices == [] # Test stream=False, stream_options={"include_usage": None} with pytest.raises(openai.BadRequestError): await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, stream=False, stream_options={"include_usage": None}) # Test stream=False, stream_options={"include_usage": True} with pytest.raises(openai.BadRequestError): await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, stream=False, stream_options={"include_usage": True}) # Test stream=True, stream_options={"include_usage": True, # "continuous_usage_stats": True} stream = await async_client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, stream=True, stream_options={ "include_usage": True, "continuous_usage_stats": True }, ) async for chunk in stream: assert chunk.usage.prompt_tokens >= 0 assert chunk.usage.completion_tokens >= 0 assert chunk.usage.total_tokens == (chunk.usage.prompt_tokens + chunk.usage.completion_tokens) def test_custom_role(client: openai.OpenAI, model_name: str): # Not sure how the model handles custom roles so we just check that # both string and complex message content are handled in the same way resp1 = client.chat.completions.create( model=model_name, messages=[{ "role": "my-custom-role", "content": "what is 1+1?", }], # type: ignore temperature=0.0, seed=0) resp2 = client.chat.completions.create( model=model_name, messages=[{ "role": "my-custom-role", "content": [{ "type": "text", "text": "what is 1+1?" }] }], # type: ignore temperature=0.0, seed=0) content1 = resp1.choices[0].message.content content2 = resp2.choices[0].message.content assert content1 == content2 def test_stop_reason(client: openai.OpenAI, model_name: str, backend: str): if backend == "pytorch": pytest.skip("Stop reason is not supported in PyTorch backend yet") messages = [{ "role": "system", "content": "you are a helpful assistant" }, { "role": "user", "content": "what is the result of one plus one?" }] resp = client.chat.completions.create( model=model_name, messages=messages, max_tokens=10, temperature=0.0, stop="two", ) assert resp.choices[0].finish_reason == "stop" assert resp.choices[0].stop_reason == "two"