# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest import torch from parameterized import parameterized import tensorrt_llm sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from utils.util import skip_bf16_pre_ampere, unittest_name_func FP8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max class TestDynamicFP8QuantDequant(unittest.TestCase): def setUp(self): torch.manual_seed(42) tensorrt_llm.logger.set_level('error') def _ref_quant(self, x_, x_scale_): x_ = x_.float() finfo = torch.finfo(torch.float8_e4m3fn) inv_scale = x_scale_.float().reciprocal() x_fp8_ = (x_ * inv_scale).clamp(min=finfo.min, max=finfo.max) return x_fp8_.to(torch.float8_e4m3fn) @parameterized.expand([(torch.float32), (torch.float16), (torch.bfloat16)], name_func=unittest_name_func) def test_quantization_activation_scales(self, dtype): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) m = 11 n = 11 A = torch.randn((m, n), dtype=dtype).cuda() B, s = torch.ops.tensorrt_llm.quantize_e4m3_activation(A) s_ref = (torch.max(A.float().abs(), -1)[0].view(m, 1) / FP8_E4M3_MAX).to(dtype) B_ref = self._ref_quant(A, s_ref) torch.testing.assert_close(s_ref, s) torch.testing.assert_close(B.float(), B_ref.float()) B_s, _ = torch.ops.tensorrt_llm.static_quantize_e4m3_activation( A, s.float()) torch.testing.assert_close(B_s.float(), B_ref.float()) @parameterized.expand([(torch.float32), (torch.float16), (torch.bfloat16)], name_func=unittest_name_func) def test_quantization_weight_scales(self, dtype): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) m = 11 n = 11 A = torch.randn((m, n), dtype=dtype).cuda() B, s = torch.ops.tensorrt_llm.quantize_e4m3_weight(A) s_ref = (torch.max(A.float().abs(), 0)[0].view(1, n) / FP8_E4M3_MAX).to(dtype) B_ref = self._ref_quant(A, s_ref) torch.testing.assert_close(s_ref, s) torch.testing.assert_close(B.float(), B_ref.float()) B_s, _ = torch.ops.tensorrt_llm.static_quantize_e4m3_weight( A, s.float()) torch.testing.assert_close(B_s.float(), B_ref.float()) @parameterized.expand([(torch.float32), (torch.float16), (torch.bfloat16)], name_func=unittest_name_func) def test_quantization_per_tensor_scales(self, dtype): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) m = 11 n = 11 A = torch.randn((m, n), dtype=dtype).cuda() B, s = torch.ops.tensorrt_llm.quantize_e4m3_per_tensor(A) s_ref = (A.flatten().float().abs().max().view(1, 1) / FP8_E4M3_MAX).to(dtype) B_ref = self._ref_quant(A, s_ref) torch.testing.assert_close(s_ref, s) torch.testing.assert_close(B.float(), B_ref.float()) B_s, _ = torch.ops.tensorrt_llm.static_quantize_e4m3_per_tensor( A, s.float()) torch.testing.assert_close(B_s.float(), B_ref.float()) @parameterized.expand([(torch.float32), (torch.float16), (torch.bfloat16)], name_func=unittest_name_func) def test_quantization_dequantization_activation(self, dtype): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) n = 512 m = 1024 A = torch.randn((n, m), dtype=dtype).cuda() assert A.stride() == (m, 1) qA, s = torch.ops.tensorrt_llm.quantize_e4m3_activation(A) assert qA.shape == A.shape assert qA.shape[:-1] == s.shape[:-1] assert s.shape[-1] == 1 assert s.dtype == A.dtype assert qA.dtype == torch.float8_e4m3fn s_ref = (torch.max(A.float().abs(), -1)[0].view(n, 1) / FP8_E4M3_MAX).to(dtype) torch.testing.assert_close(s_ref, s) B = torch.ops.tensorrt_llm.dequantize_e4m3_activation(qA, s) assert B.shape == A.shape assert B.dtype == A.dtype torch.testing.assert_close(A, B, atol=0.2, rtol=0.01) # testing exact match A = torch.randint(0, 8, (n, m), dtype=dtype).cuda() qA, s = torch.ops.tensorrt_llm.quantize_e4m3_activation(A) B = torch.ops.tensorrt_llm.dequantize_e4m3_activation(qA, s) torch.testing.assert_close(A, B) @parameterized.expand([(torch.float32), (torch.float16), (torch.bfloat16)], name_func=unittest_name_func) def test_quantization_dequantization_weight(self, dtype): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) n = 512 m = 1024 A = torch.randn((n, m), dtype=dtype).cuda() assert A.stride() == (m, 1) qA, s = torch.ops.tensorrt_llm.quantize_e4m3_weight(A) assert qA.shape == A.shape assert qA.shape[1:] == s.shape[1:] assert s.shape[0] == 1 s_ref = (torch.max(A.float().abs(), 0)[0].view(1, m) / FP8_E4M3_MAX).to(dtype) torch.testing.assert_close(s_ref, s) B = torch.ops.tensorrt_llm.dequantize_e4m3_weight(qA, s) torch.testing.assert_close(A, B, atol=0.2, rtol=0) # testing exact match A = torch.randint(0, 8, (n, m), dtype=dtype).cuda() qA, s = torch.ops.tensorrt_llm.quantize_e4m3_weight(A) B = torch.ops.tensorrt_llm.dequantize_e4m3_weight(qA, s) torch.testing.assert_close(A, B) @parameterized.expand([(torch.float32), (torch.float16), (torch.bfloat16)], name_func=unittest_name_func) def test_quantization_dequantization_per_tensor(self, dtype): # Skip tests that are not supported in pre-ampere architecture skip_bf16_pre_ampere(dtype) n = 512 m = 1024 A = torch.randn((n, m), dtype=dtype).cuda() qA, s = torch.ops.tensorrt_llm.quantize_e4m3_per_tensor(A) assert qA.shape == A.shape assert qA.dim() == s.dim() assert s.numel() == 1 s_ref = (A.flatten().float().abs().max().view(1, 1) / FP8_E4M3_MAX).to(dtype) torch.testing.assert_close(s_ref, s) B = torch.ops.tensorrt_llm.dequantize_e4m3_per_tensor(qA, s) # per tensor is less accurate than others, so larger atol is used. torch.testing.assert_close(A, B, atol=0.25, rtol=0) # testing exact match A = torch.randint(0, 8, (n, m), dtype=dtype).cuda() qA, s = torch.ops.tensorrt_llm.quantize_e4m3_per_tensor(A) B = torch.ops.tensorrt_llm.dequantize_e4m3_per_tensor(qA, s) torch.testing.assert_close(A, B) if __name__ == '__main__': unittest.main()