# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from tensorrt_llm.quantization import QuantMode class TestQuantMode(unittest.TestCase): def test_all(self): # Set activations and weights flags. qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS # Make sure _all returns True when asked for both ACTIVATIONS and INT8_WEIGHTS. self.assertTrue(qm._all(QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS)) # Make sure _all returns False when asked only for ACTIVATIONS. self.assertFalse(qm._all(QuantMode.ACTIVATIONS)) # Make sure _all returns True when asked only for ACTIVATIONS if limited to ACTIVATIONS flag. self.assertTrue( qm._all(QuantMode.ACTIVATIONS, mask=QuantMode.ACTIVATIONS)) def test_any(self): # Set activations and weights flags. qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS # Make sure _any returns True when asked for both ACTIVATIONS and INT8_WEIGHTS. self.assertTrue(qm._any(QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS)) # Make sure _any returns True when asked only for ACTIVATIONS. self.assertTrue(qm._any(QuantMode.ACTIVATIONS)) # Make sure _any returns False when asked for PER_TOKEN. self.assertFalse(qm._any(QuantMode.PER_TOKEN)) def test_count(self): # Make sure the COUNT value is as expected - change that test if you add a new flag. self.assertEqual(QuantMode.COUNT.value, 1 << 12) def test_from_description(self): # Test weight only. qm = QuantMode.from_description(True, False, False, False) # Make sure only the INT8_WEIGHTS flag is set. self.assertEqual(qm, QuantMode.INT8_WEIGHTS) # Test weight only. qm = QuantMode.use_weight_only() # Make sure only the INT8_WEIGHTS flag is set. self.assertEqual(qm, QuantMode.INT8_WEIGHTS) # Test weight only (int4). qm = QuantMode.from_description(True, False, False, False, False, True) # Make sure only the INT4_WEIGHTS flag is set. self.assertEqual(qm, QuantMode.INT4_WEIGHTS) # Test weight only. qm = QuantMode.use_weight_only(use_int4_weights=True) # Make sure only the INT4_WEIGHTS flag is set. self.assertEqual(qm, QuantMode.INT4_WEIGHTS) # Test activation/weight per-tensor. qm = QuantMode.from_description(True, True, False, False) # The reference. expected_qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS # Make sure ACTIVATIONS and INT8_WEIGHTS flags are set. self.assertEqual(qm, expected_qm) # Test activation/weight per-tensor. qm = QuantMode.use_smooth_quant() # Make sure ACTIVATIONS and INT8_WEIGHTS flags are set. self.assertEqual(qm, expected_qm) # Test activation/weight per-tensor & per-channel. qm = QuantMode.from_description(True, True, False, True) # The reference. expected_qm = expected_qm | QuantMode.PER_CHANNEL # Make sure ACTIVATIONS, INT8_WEIGHTS and PER_CHANNEL flags are set. self.assertEqual(qm, expected_qm) # Test activation/weight per-tensor & per-channel. qm = QuantMode.use_smooth_quant(per_channel=True) # Make sure ACTIVATIONS, INT8_WEIGHTS and PER_CHANNEL flags are set. self.assertEqual(qm, expected_qm) # Test activation/weight per-token & per-channel. qm = QuantMode.from_description(True, True, True, True) # The expected result. expected_qm = expected_qm | QuantMode.PER_TOKEN # Make sure all flags are set. self.assertEqual(qm, expected_qm) # Test activation/weight per-token & per-channel. qm = QuantMode.use_smooth_quant(True, True) # Make sure all flags are set. self.assertEqual(qm, expected_qm) def test_per_channel(self): # Set per-channel flag. qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS | QuantMode.PER_CHANNEL # Make sure it returns True for per-channel. self.assertTrue(qm.has_per_channel_scaling()) # Do not set per-channel flag. qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS # Make sure it returns False for per-channel. self.assertFalse(qm.has_per_channel_scaling()) def test_per_token(self): # Set per-token flag. qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS | QuantMode.PER_TOKEN # Make sure it returns True for per-token. self.assertTrue(qm.has_per_token_dynamic_scaling()) # Make sure it returns False for per-tensor. self.assertFalse(qm.has_act_static_scaling()) # Do not set per-token flag. qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS # Make sure it returns False for per-token. self.assertFalse(qm.has_per_token_dynamic_scaling()) # Make sure it returns True for per-tensor. self.assertTrue(qm.has_act_static_scaling()) def test_weights_only(self): # Set weights flags. qm = QuantMode.INT8_WEIGHTS # Make sure it returns True for weight-only. self.assertTrue(qm.is_weight_only()) # Make sure it returns True for weight-only. self.assertTrue(qm.is_int8_weight_only()) # Set weights flags. qm = QuantMode.INT4_WEIGHTS # Make sure it returns True for weight-only. self.assertTrue(qm.is_weight_only()) # Make sure it returns True for weight-only. self.assertTrue(qm.is_int4_weight_only()) # Set activations and weights flags. qm = QuantMode.ACTIVATIONS | QuantMode.INT8_WEIGHTS # Make sure it returns False for weight-only. self.assertFalse(qm.is_weight_only()) def test_int8_kv_cache(self): # Set int8 kv cache flags. qm = QuantMode.INT8_KV_CACHE # Make sure it returns True for kv_cache. self.assertTrue(qm.has_int8_kv_cache()) # Make sure it returns True for any quantization. self.assertTrue(qm.has_any_quant()) # Set weights flags. qm = QuantMode.INT8_WEIGHTS # Make sure it returns True for any quantization. self.assertTrue(qm.has_any_quant()) # Set int8 KV cache flag. qm = qm.set_int8_kv_cache() # Make sure it returns True for kv_cache. self.assertTrue(qm.has_int8_kv_cache()) # Make sure it returns True for weight-only. self.assertTrue(qm.is_weight_only()) # Make sure it returns True for weight-only. self.assertTrue(qm.is_int8_weight_only()) def test_failure_quant(self): # Expect failure if weights are not quantized, but activations are. self.assertRaises( ValueError, lambda: QuantMode.from_description(False, True, False, False)) # Expect failure if per token and per channel quantization, but weights and activations are not quantized. self.assertRaises( ValueError, lambda: QuantMode.from_description(False, False, True, True)) if __name__ == '__main__': unittest.main()