/* * SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "cacheFormatter.h" #include "tensorrt_llm/batch_manager/contextProgress.h" #include "tensorrt_llm/batch_manager/kvCacheUtils.h" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/dataType.h" #include "tensorrt_llm/common/envUtils.h" #include "tensorrt_llm/common/logger.h" #include "tensorrt_llm/common/nvtxUtils.h" #include "tensorrt_llm/executor/cache_transmission/cacheConcatenate.h" #include "tensorrt_llm/executor/executor.h" #include "tensorrt_llm/runtime/iTensor.h" #include "tensorrt_llm/runtime/utils/mpiUtils.h" #include #include #include namespace tensorrt_llm::batch_manager::kv_cache_manager { void CacheFormatter::formatOutput(LlmRequest const& llmRequest, std::vector const& connections, CacheState const& selfConfig, SizeType32 selfIdx, CacheState const& destConfig, runtime::BufferManager const& bufferManager) { NVTX3_SCOPED_RANGE(formatOutput); TLLM_LOG_DEBUG( mpi::MpiComm::world().getRank(), "Start sending KV cache for request ID: %ld.", llmRequest.mRequestId); TLLM_CHECK_WITH_INFO(llmRequest.mSamplingConfig.beamWidth == 1, "Currently, only beam width 1 is supported."); TLLM_CHECK(!connections.empty()); constexpr SizeType32 beam{0}; auto& blockManager = mCacheManager->getBlockManager(); size_t requestBlockNum = llmRequest.getRequestedBlockHashes().size(); auto blockRange = BlockRange(*mCacheManager, llmRequest.mRequestId, beam); if (requestBlockNum < blockRange.size() && requestBlockNum > 0) { // handle block reuse, the prefix blocks are reused // TODO(zhengd): pass the hashes directly instead of from llmRequest; use hash instead of block num auto const& ids = blockRange.getBlockIds(); blockRange.setBlockIds({ids.end() - requestBlockNum, ids.end()}); } auto const numPools = blockManager.getNumPools(); // TODO(oargov): are we sure the other side has the same number of pools? this might not hold for pp_size>1... bool layerWise = common::getEnvDisaggLayerwise() && numPools == 1; if (layerWise) { auto& progress = llmRequest.getContextProgress(); SizeType32 const numLayers = blockManager.getNumLayers(); runtime::ITensor::Shape offset = runtime::ITensor::makeShape({0, 0}); for (SizeType32 layerIdx = 0; layerIdx < numLayers; layerIdx++) { auto const poolIdx = blockManager.getLayerPoolIdx(layerIdx); auto const layerIdxInPool = blockManager.getPoolLayerIdx(layerIdx); offset.d[1] = layerIdxInPool; if (progress != nullptr) { progress->wait(layerIdx); } blockRange.updatePoolIdx(poolIdx); for (auto it = blockRange.begin(); it != blockRange.end(); ++it) { // Block dim: [1, numLayersInPool, ...], offset = {0, layerIndexInPool} auto layer = runtime::ITensor::slice(it, offset, 1); if (offset.d[1] == 0) { TLLM_LOG_DEBUG("Block %p of pool %d shape = %s", it->data(), poolIdx, runtime::ITensor::toString(it->getShape()).c_str()); } for (auto const& connection : connections) { TLLM_LOG_DEBUG("Send layer %d(%d-%d)", layerIdx, poolIdx, layerIdxInPool); TransferHelper::sendBuffer(*connection, *layer, llmRequest.mRequestId); } } } } else { int blockNum = 0; std::vector inputKvCacheBlocks; for (auto poolIdx = 0; poolIdx < numPools; poolIdx++) { blockRange.updatePoolIdx(poolIdx); for (auto it = blockRange.begin(); it != blockRange.end(); ++it) { blockNum++; inputKvCacheBlocks.push_back(it); } } TLLM_CHECK(!inputKvCacheBlocks.empty()); TLLM_CHECK(blockNum > 0); int deviceId = mCacheManager->getBlockManager().getBufferManager().getStream().getDevice(); if (common::getEnvTryZCopyForKVCacheTransfer() && (destConfig.getParallelConfig().mPipelineParallelism <= selfConfig.getParallelConfig().mPipelineParallelism) && (destConfig.getParallelConfig().mTensorParallelism <= selfConfig.getParallelConfig().mTensorParallelism)) { TLLM_LOG_DEBUG("Try using zero-copy for the KV cache."); NVTX3_SCOPED_RANGE(sendBufferFun); TLLM_CHECK(connections.size() == 1); TLLM_CUDA_CHECK(cudaSetDevice(deviceId)); for (auto const& connection : connections) { for (auto const& block : inputKvCacheBlocks) { TransferHelper::sendBuffer(*connection, *block, llmRequest.mRequestId); } } TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "End the sending of KV cache for the request ID: %ld.", llmRequest.mRequestId); return; } auto cacheBlockSize = inputKvCacheBlocks.front()->getSize(); auto dataType = inputKvCacheBlocks.front()->getDataType(); size_t const sendBufferSize = common::getEnvMemSizeForKVCacheTransferBuffer(); size_t const sendBufferEleSize = sendBufferSize / common::getDTypeSize(dataType); bool const onlyUseAsyncBuffer = sendBufferEleSize == 0; runtime::ITensor::SharedPtr preAllocSendBuffer; auto const maxConcurrenceNum = static_cast(common::getEnvKVCacheSendMaxConcurrenceNum()); if (!onlyUseAsyncBuffer && (mConcurrenceSendResource.mConcurrence >= maxConcurrenceNum)) { std::unique_lock lk(mConcurrenceSendResource.mSendbuffersMutex); mConcurrenceSendResource.mSendbuffersCV.wait( lk, [this, maxConcurrenceNum]() { return mConcurrenceSendResource.mConcurrence < maxConcurrenceNum; }); } if (!onlyUseAsyncBuffer) { int bufferId = mConcurrenceSendResource.mConcurrence++; if (!onlyUseAsyncBuffer && mConcurrenceSendResource.mSendbuffers.find(bufferId) == mConcurrenceSendResource.mSendbuffers.end()) { if (common::getEnvKVCacheTransferUseAsyncBuffer()) { mConcurrenceSendResource.mSendbuffers[bufferId] = bufferManager.gpu( runtime::ITensor::makeShape({static_cast(sendBufferEleSize)}), dataType); } else { mConcurrenceSendResource.mSendbuffers[bufferId] = bufferManager.gpuSync( runtime::ITensor::makeShape({static_cast(sendBufferEleSize)}), dataType); } } preAllocSendBuffer = mConcurrenceSendResource.mSendbuffers[bufferId]; }; auto targetNum = connections.size(); TLLM_CHECK((cacheBlockSize * blockNum) % targetNum == 0); auto const targetBufferSize = (cacheBlockSize * blockNum) / targetNum; std::vector outputSplitCaches; size_t bufferCoverTargetNum = sendBufferEleSize / targetBufferSize; runtime::ITensor::SharedPtr SendBufferTemp; if (bufferCoverTargetNum < targetNum) { SendBufferTemp = bufferManager.gpu(runtime::ITensor::makeShape( {static_cast(targetBufferSize * (targetNum - bufferCoverTargetNum))}), dataType); } for (size_t i = 0; i < targetNum; i++) { if (i < bufferCoverTargetNum) { auto slice = runtime::ITensor::slice(preAllocSendBuffer, i * targetBufferSize, targetBufferSize); outputSplitCaches.push_back(std::move(slice)); } else { auto slice = runtime::ITensor::slice( SendBufferTemp, (i - bufferCoverTargetNum) * targetBufferSize, targetBufferSize); outputSplitCaches.push_back(std::move(slice)); } } tensorrt_llm::executor::kv_cache::splitKVCacheDispatch( inputKvCacheBlocks, outputSplitCaches, destConfig, selfConfig, selfIdx, bufferManager); bufferManager.getStream().synchronize(); if (onlyUseAsyncBuffer) { bufferCoverTargetNum = targetNum; } auto sendBufferFun = [&](int deviceId, size_t processIdx) { NVTX3_SCOPED_RANGE(sendBufferFun); TLLM_CUDA_CHECK(cudaSetDevice(deviceId)); TLLM_CHECK(connections.size() > processIdx); TLLM_CHECK(outputSplitCaches.size() > processIdx); auto startTime = std::chrono::steady_clock::now(); size_t size; if (processIdx < bufferCoverTargetNum) { size = (*outputSplitCaches[processIdx]).getSizeInBytes(); TransferHelper::sendBuffer( *connections[processIdx], *outputSplitCaches[processIdx], llmRequest.mRequestId); } else if (bufferCoverTargetNum > 0) { // copy buffer allocated by cudaMallocAsync to buffer allocated by cudaMalloc before sending auto sendBufferIdx = processIdx % bufferCoverTargetNum; bufferManager.copy(*outputSplitCaches[processIdx], *outputSplitCaches.at(sendBufferIdx)); bufferManager.getStream().synchronize(); size = (*outputSplitCaches.at(sendBufferIdx)).getSizeInBytes(); TransferHelper::sendBuffer( *connections[processIdx], *outputSplitCaches.at(sendBufferIdx), llmRequest.mRequestId); } else { // bufferCoverTargetNum == 0, mSendBuffer size < one outputSlice // send multiple times size = targetBufferSize; size_t remainSendSize = targetBufferSize; while (remainSendSize > 0) { auto sendSize = std::min(remainSendSize, sendBufferEleSize); auto copySlice = runtime::ITensor::slice( outputSplitCaches[processIdx], targetBufferSize - remainSendSize, sendSize); auto copyTargetSlice = runtime::ITensor::slice(preAllocSendBuffer, 0, sendSize); bufferManager.copy(*copySlice, *copyTargetSlice); bufferManager.getStream().synchronize(); TransferHelper::sendBuffer(*connections[processIdx], *copyTargetSlice, llmRequest.mRequestId); remainSendSize -= sendSize; } } auto endTime = std::chrono::steady_clock::now(); double cacheTransferTime = std::max(0.0, std::chrono::duration(endTime - startTime).count()); kvCacheMeasureHelper.appendKVCacheTransfer(llmRequest.mRequestId, cacheTransferTime, size); }; if (connections.size() > 1) { if (common::getEnvDisableReceiveKVCacheParallel()) { TLLM_LOG_DEBUG("Disable parallel receiving of the KV cache."); for (size_t i = 0; i < connections.size(); i++) { sendBufferFun(deviceId, i); } } else { // concurrency num auto concurrencyNum = std::min(std::max(static_cast(1), bufferCoverTargetNum), connections.size()); auto remainSendNum = connections.size(); while (remainSendNum > 0) { auto sendConcurrencyNum = std::min(remainSendNum, concurrencyNum); std::vector> futures; futures.reserve(sendConcurrencyNum); for (size_t i = 0; i < sendConcurrencyNum; i++) { TLLM_CHECK((i + (connections.size() - remainSendNum)) < connections.size()); futures.push_back(std::async( std::launch::async, sendBufferFun, deviceId, i + (connections.size() - remainSendNum))); } for (auto& future : futures) { future.get(); } remainSendNum -= sendConcurrencyNum; } } } else { sendBufferFun(deviceId, 0); } if (!onlyUseAsyncBuffer && (mConcurrenceSendResource.mConcurrence--) >= maxConcurrenceNum) { mConcurrenceSendResource.mSendbuffersCV.notify_one(); } } TLLM_LOG_DEBUG( mpi::MpiComm::world().getRank(), "End the sending of KV cache for the request ID:%ld ", llmRequest.mRequestId); } void CacheFormatter::formatInput(LlmRequest const& llmRequest, std::vector const& connections, CacheState const& selfConfig, SizeType32 selfIdx, CacheState const& destConfig, runtime::BufferManager const& bufferManager) { NVTX3_SCOPED_RANGE(formatInput); TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "Start receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId, llmRequest.getContextPhaseParams().value().getReqId()); TLLM_CHECK(!connections.empty()); auto blockRange = BlockRange(*mCacheManager, mCacheManager->getNewlyAllocatedBlockIds(llmRequest.mRequestId)); std::vector recvBufferTmps; std::vector outputBuffers; auto const numPools = mCacheManager->getBlockManager().getNumPools(); // TODO(oargov): are we sure the other side has the same number of pools? this might not hold for pp_size>1... size_t blockNum = 0; for (auto poolIdx = 0; poolIdx < numPools; poolIdx++) { blockRange.updatePoolIdx(poolIdx); for (auto it = blockRange.begin(); it != blockRange.end(); ++it) { blockNum++; outputBuffers.push_back(it); } } TLLM_CHECK(!outputBuffers.empty()); { NVTX3_SCOPED_RANGE(formatInputRecvBuffer); auto reqId = llmRequest.getContextPhaseParams().value().getReqId(); auto dataType = mCacheManager->getPrimaryPool(0)->getDataType(); bool layerWise = common::getEnvDisaggLayerwise() && numPools == 1; if (layerWise) { // [numLayersInPool, ...] auto cacheShape = executor::kv_cache::makeShapeFromCacheState(destConfig); auto cacheVolume = runtime::ITensor::volume(cacheShape); size_t bufferNum = blockNum * connections.size(); runtime::ITensor::SharedPtr recvBufferTemp; { NVTX3_SCOPED_RANGE(formatInputAllocBuffer); recvBufferTemp = bufferManager.gpu( runtime::ITensor::makeShape({static_cast(cacheVolume * bufferNum)}), dataType); recvBufferTmps.resize(bufferNum); for (size_t i = 0; i < bufferNum; i++) { recvBufferTmps[i] = runtime::ITensor::slice(recvBufferTemp, i * cacheVolume, cacheVolume); } // sync to alloc buffer bufferManager.getStream().synchronize(); } SizeType32 const numLocalLayers = mCacheManager->getBlockManager().getNumLayers(); SizeType32 const numLayers = cacheShape.d[0]; TLLM_CHECK(numLayers % numLocalLayers == 0 || numLocalLayers % numLayers == 0); auto layerVolume = cacheVolume / cacheShape.d[0]; for (SizeType32 layerIdx = 0; layerIdx < numLayers; layerIdx++) { // TODO: only send/recv required layers for ctxPP < genPP (numLayers > numLocalLayers) auto const poolIdx = 0; auto const layerIdxInPool = layerIdx; int idx = 0; blockRange.updatePoolIdx(poolIdx); for (auto it = blockRange.begin(); it != blockRange.end(); ++it) { if (layerIdxInPool == 0) { TLLM_LOG_DEBUG("Buffer %d of pool %d shape = %s", idx, poolIdx, runtime::ITensor::toString(recvBufferTmps[idx]->getShape()).c_str()); } for (auto const& connection : connections) { TLLM_LOG_DEBUG("Receive layer %d(%d-%d)", layerIdx, poolIdx, layerIdxInPool); // Buffer dim: [numLayersInPool * layerVolume] auto layer = runtime::ITensor::slice(recvBufferTmps[idx], layerIdxInPool * layerVolume, layerVolume); llmRequest.updateKvCacheSize((*layer).getSizeInBytes()); TransferHelper::recvBuffer(*connection, *layer, reqId); idx++; } } } { NVTX3_SCOPED_RANGE(formatInputConcatenate); executor::kv_cache::concatenateKVCacheDispatch(recvBufferTmps.data(), recvBufferTmps.size(), getCounterparts(selfConfig, selfIdx, destConfig), destConfig, outputBuffers.data(), outputBuffers.size(), selfIdx, selfConfig, bufferManager); bufferManager.getStream().synchronize(); } } else { // non-layer-wise int deviceId = bufferManager.getStream().getDevice(); if (common::getEnvTryZCopyForKVCacheTransfer() && destConfig == selfConfig) { TLLM_LOG_DEBUG("try zcopy for KV cache"); NVTX3_SCOPED_RANGE(recvBufferFun); TLLM_CHECK(connections.size() == 1); TLLM_CUDA_CHECK(cudaSetDevice(deviceId)); for (auto const& connection : connections) { for (auto const& block : outputBuffers) { llmRequest.updateKvCacheSize((*block).getSizeInBytes()); TransferHelper::recvBuffer(*connection, *block, reqId); } } TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "End receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId, llmRequest.getContextPhaseParams().value().getReqId()); return; } // legacyPath: context executor rank only send data to one gen executor rank. it sends multiple cache // blocks. auto legacyPath = common::getEnvTryZCopyForKVCacheTransfer() && (destConfig.getParallelConfig().mPipelineParallelism >= selfConfig.getParallelConfig().mPipelineParallelism) && (destConfig.getParallelConfig().mTensorParallelism >= selfConfig.getParallelConfig().mTensorParallelism); runtime::ITensor::SharedPtr recvBufferTemp; runtime::ITensor::SharedPtr preAllocRecvBufferTemp; std::vector recvSplitCaches; auto cacheBlockSize = outputBuffers.front()->getSize(); auto dataType = outputBuffers.front()->getDataType(); auto const recvBufferSize = common::getEnvMemSizeForKVCacheTransferBuffer(); auto const recvBufferEleSize = recvBufferSize / common::getDTypeSize(dataType); auto targetNum = connections.size(); TLLM_CHECK((cacheBlockSize * blockNum) % targetNum == 0); auto targetBufferSize = (cacheBlockSize * blockNum) / targetNum; size_t bufferCoverTargetNum = recvBufferEleSize / targetBufferSize; size_t remainNoCoverTargetNum = targetNum > bufferCoverTargetNum ? targetNum - bufferCoverTargetNum : 0; bool const onlyUseAsyncBuffer = recvBufferEleSize == 0; { NVTX3_SCOPED_RANGE(formatInputAllocBuffer); TLLM_CHECK(blockNum > 0); TLLM_CHECK(outputBuffers.size() == blockNum); if (legacyPath) { TLLM_LOG_DEBUG("formatOutput using legacy path"); auto cacheShape = executor::kv_cache::makeShapeFromCacheState(destConfig); auto cacheVolume = runtime::ITensor::volume(cacheShape); size_t bufferNum = blockNum * connections.size(); recvBufferTemp = bufferManager.gpu( runtime::ITensor::makeShape({static_cast(cacheVolume * bufferNum)}), dataType); recvSplitCaches.resize(bufferNum); for (size_t i = 0; i < bufferNum; i++) { recvSplitCaches[i] = runtime::ITensor::slice(recvBufferTemp, i * cacheVolume, cacheVolume); } } else { if (!onlyUseAsyncBuffer) { std::string processString = llmRequest.getDataTransceiverState().getCommState()->toString(); if (common::getEnvRequestKVCacheSerial()) { processString = "default"; } { std::scoped_lock lock(mProcessToRecvBufferMutex); if (mProcessToRecvBuffer.find(processString) == mProcessToRecvBuffer.end()) { if (common::getEnvKVCacheTransferUseAsyncBuffer()) { mProcessToRecvBuffer[processString] = bufferManager.gpu( runtime::ITensor::makeShape({static_cast(recvBufferEleSize)}), dataType); } else { mProcessToRecvBuffer[processString] = bufferManager.gpuSync( runtime::ITensor::makeShape({static_cast(recvBufferEleSize)}), dataType); } } preAllocRecvBufferTemp = mProcessToRecvBuffer[processString]; } } if (bufferCoverTargetNum < targetNum) { recvBufferTemp = bufferManager.gpu(runtime::ITensor::makeShape( {static_cast(remainNoCoverTargetNum * targetBufferSize)}), dataType); } for (size_t i = 0; i < targetNum; i++) { if (i < remainNoCoverTargetNum) { recvSplitCaches.push_back( runtime::ITensor::slice(recvBufferTemp, i * targetBufferSize, targetBufferSize)); } else { recvSplitCaches.push_back(runtime::ITensor::slice(preAllocRecvBufferTemp, (i - remainNoCoverTargetNum) * targetBufferSize, targetBufferSize)); } } } // sync to alloc buffer bufferManager.getStream().synchronize(); } if (onlyUseAsyncBuffer) { remainNoCoverTargetNum = 0; bufferCoverTargetNum = targetNum; } auto recvBufferFun = [&](int deviceId, size_t processIdx) { NVTX3_SCOPED_RANGE(recvBufferFun); TLLM_CUDA_CHECK(cudaSetDevice(deviceId)); TLLM_CHECK(connections.size() > processIdx); TLLM_CHECK(recvSplitCaches.size() > processIdx); if (legacyPath) { size_t idx = processIdx * blockNum; for (size_t i = 0; i < blockNum; i++) { size_t commIdx = idx / (blockNum); size_t blockIdx = idx % (blockNum); size_t recvBufferIdx = blockIdx * connections.size() + commIdx; llmRequest.updateKvCacheSize((*recvSplitCaches[recvBufferIdx]).getSizeInBytes()); TransferHelper::recvBuffer(*connections[processIdx], *recvSplitCaches.at(recvBufferIdx), reqId); idx++; } } else { if (processIdx >= remainNoCoverTargetNum) { llmRequest.updateKvCacheSize((*recvSplitCaches.at(processIdx)).getSizeInBytes()); TransferHelper::recvBuffer(*connections[processIdx], *recvSplitCaches[processIdx], reqId); } else if (bufferCoverTargetNum > 0) { auto recvBufferIdx = processIdx % bufferCoverTargetNum + remainNoCoverTargetNum; // caches.at(recvBufferIdx) is allocated by cudaMalloc llmRequest.updateKvCacheSize((*recvSplitCaches.at(recvBufferIdx)).getSizeInBytes()); TransferHelper::recvBuffer(*connections[processIdx], *recvSplitCaches.at(recvBufferIdx), reqId); bufferManager.copy(*recvSplitCaches.at(recvBufferIdx), *recvSplitCaches[processIdx]); bufferManager.getStream().synchronize(); } else { // bufferCoverTargetNum == 0 size_t remainRecvSize = targetBufferSize; while (remainRecvSize > 0) { auto recvSize = std::min(remainRecvSize, recvBufferEleSize); auto recvSlice = runtime::ITensor::slice(preAllocRecvBufferTemp, 0, recvSize); auto copySlice = runtime::ITensor::slice( recvSplitCaches[processIdx], targetBufferSize - remainRecvSize, recvSize); llmRequest.updateKvCacheSize((*recvSlice).getSizeInBytes()); TransferHelper::recvBuffer(*connections[processIdx], *recvSlice, reqId); bufferManager.copy(*recvSlice, *copySlice); bufferManager.getStream().synchronize(); remainRecvSize -= recvSize; } } } }; if (connections.size() > 1) { if (common::getEnvDisableReceiveKVCacheParallel()) { for (size_t i = 0; i < connections.size(); i++) { recvBufferFun(deviceId, i); } } else { // concurrency num auto concurrencyNum = std::min(std::max(static_cast(1), bufferCoverTargetNum), connections.size()); auto remainRecvNum = connections.size(); while (remainRecvNum > 0) { auto recvConcurrencyNum = std::min(remainRecvNum, concurrencyNum); if (remainRecvNum > concurrencyNum && remainRecvNum < (2 * concurrencyNum)) { recvConcurrencyNum = remainRecvNum - concurrencyNum; } std::vector> futures; futures.reserve(recvConcurrencyNum); for (size_t i = 0; i < recvConcurrencyNum; i++) { TLLM_CHECK((i + (connections.size() - remainRecvNum)) < connections.size()); futures.push_back(std::async( std::launch::async, recvBufferFun, deviceId, i + (connections.size() - remainRecvNum))); } for (auto& future : futures) { future.get(); } remainRecvNum -= recvConcurrencyNum; } } } else { recvBufferFun(deviceId, 0); } { NVTX3_SCOPED_RANGE(formatInputConcatenate); if (legacyPath) { executor::kv_cache::concatenateKVCacheDispatch(recvSplitCaches.data(), recvSplitCaches.size(), getCounterparts(selfConfig, selfIdx, destConfig), destConfig, outputBuffers.data(), outputBuffers.size(), selfIdx, selfConfig, bufferManager); } else { executor::kv_cache::concatenateKvCacheV2Dispatch( recvSplitCaches, outputBuffers, destConfig, selfConfig, selfIdx, bufferManager); } bufferManager.getStream().synchronize(); } } } TLLM_LOG_DEBUG(mpi::MpiComm::world().getRank(), "End receiving KV cache for request ID: %ld, context request ID: %ld.", llmRequest.mRequestId, llmRequest.getContextPhaseParams().value().getReqId()); } [[nodiscard]] bool CacheFormatter::inquireSupport(CacheState const& selfConfig, CacheState const& destConfig) const { std::unordered_set setVecSelf{ selfConfig.getModelConfig().mNbKvHeadsPerLayer.begin(), selfConfig.getModelConfig().mNbKvHeadsPerLayer.end()}; if (setVecSelf.size() != 1) { return false; } if (selfConfig.getAttentionConfig().mAttentionType != destConfig.getAttentionConfig().mAttentionType) { return false; } if (selfConfig.getAttentionConfig().mKvFactor != destConfig.getAttentionConfig().mKvFactor) { return false; } if (selfConfig.getAttentionConfig().mAttentionType == CacheState::AttentionType::kMLA) { return false; } std::unordered_set setVecDest{ destConfig.getModelConfig().mNbKvHeadsPerLayer.begin(), destConfig.getModelConfig().mNbKvHeadsPerLayer.end()}; if (setVecDest.size() != 1) { return false; } if (selfConfig.getModelConfig().mTokensPerBlock != destConfig.getModelConfig().mTokensPerBlock || selfConfig.getModelConfig().mSizePerHead != destConfig.getModelConfig().mSizePerHead) { return false; } if (selfConfig.getModelConfig().mNbKvHeadsPerLayer.size() != destConfig.getModelConfig().mNbKvHeadsPerLayer.size()) { return false; } int selfTPInDP = selfConfig.getParallelConfig().mEnableAttenionDP ? selfConfig.getParallelConfig().mTensorParallelism / selfConfig.getParallelConfig().mDPsize : selfConfig.getParallelConfig().mTensorParallelism; int destTPInDP = destConfig.getParallelConfig().mEnableAttenionDP ? destConfig.getParallelConfig().mTensorParallelism / destConfig.getParallelConfig().mDPsize : destConfig.getParallelConfig().mTensorParallelism; int selfNumHeads = selfConfig.getModelConfig().mNbKvHeadsPerLayer[0] * selfTPInDP; int destNumHeads = destConfig.getModelConfig().mNbKvHeadsPerLayer[0] * destTPInDP; return selfNumHeads == destNumHeads; } } // namespace tensorrt_llm::batch_manager::kv_cache_manager