/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/kernels/trtllmGenKernels/blockScaleMoe/runner.h" #include #include #include #include #include namespace torch_ext { namespace btg = batchedGemm::trtllm::gen; using tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::RoutingMethodType; using MoeRunnerType = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::Runner; at::Tensor run_fp8_block_scale_moe(at::Tensor const& routing_logits, at::Tensor const& routing_bias, at::Tensor const& hidden_states, at::Tensor const& hidden_states_scale, at::Tensor const& gemm1_weights, at::Tensor const& gemm1_weights_scale, at::Tensor const& gemm2_weights, at::Tensor const& gemm2_weights_scale, int64_t const num_experts, int64_t const top_k, int64_t const n_group, int64_t const topk_group, int64_t const intermediate_size, int64_t const local_expert_offset, int64_t const local_num_experts, double const routed_scaling_factor, int64_t const tile_tokens_dim, int64_t const routing_method_type, MoeRunnerType& moe_runner, int64_t moeConfigIndex) { auto const sm = tensorrt_llm::common::getSMVersion(); TORCH_CHECK(sm == 100, "Only SM100 is supported by FP8 block scale MOE"); TORCH_CHECK(routing_logits.scalar_type() == at::ScalarType::Float, "routing_logits must be float."); TORCH_CHECK(routing_logits.dim() == 2, "routing_logits must be 2D."); TORCH_CHECK(routing_logits.sizes()[1] == num_experts, "routing_logits has incorrect shape."); TORCH_CHECK( routing_bias.scalar_type() == at::ScalarType::BFloat16 || routing_bias.scalar_type() == at::ScalarType::Float, "routing_bias must be bfloat16 or float."); TORCH_CHECK(routing_bias.dim() == 1, "routing_bias must be 1D."); TORCH_CHECK(routing_bias.sizes()[0] == num_experts, "routing_bias has incorrect shape."); if (n_group <= 0 || topk_group <= 0) { TORCH_CHECK(top_k == 1, "Current routing kernel (no groups) only supports top_k=1."); } else { TORCH_CHECK(top_k <= 8, "Current routing kernel (with groups) only supports top_k<=8."); TORCH_CHECK(topk_group <= 4, "Current routing kernel (with groups) only supports topk_group<=4."); TORCH_CHECK(topk_group <= n_group, "n_group must not be smaller than topk_group."); TORCH_CHECK(num_experts % n_group == 0, "num_experts must be divisible by n_group"); // This check ensures we have enough experts in the selected groups to handle the top_k routing TORCH_CHECK(top_k < (topk_group * num_experts / n_group), "top_k must be less than total number of experts in selected groups"); } TORCH_CHECK(num_experts % 4 == 0, "Routing kernel expects that num_experts must be divisible by 4"); TORCH_CHECK(num_experts > top_k, "num_experts must be greater than top_k"); tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::MoERunnerArgs args; tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::MoEWorkspace workspace; // setup args // note: the assumption is that output data type is always Bfloat16 (the default) args.mDtypeElt = btg::Dtype::E4m3; args.mDtypeExpW = routing_bias.scalar_type() == at::ScalarType::BFloat16 ? btg::Dtype::Bfloat16 : btg::Dtype::Fp32; args.routing_logits = routing_logits.data_ptr(); args.routing_bias = routing_bias.data_ptr(); args.hidden_states = hidden_states.data_ptr(); args.hidden_states_scale = hidden_states_scale.data_ptr(); args.gemm1_weights = gemm1_weights.data_ptr(); args.gemm1_weights_scale = gemm1_weights_scale.data_ptr(); args.gemm2_weights = gemm2_weights.data_ptr(); args.gemm2_weights_scale = gemm2_weights_scale.data_ptr(); args.num_tokens = hidden_states.sizes()[0]; args.num_experts = num_experts; args.hidden_size = hidden_states.sizes()[1]; args.top_k = top_k; args.n_group = n_group; args.topk_group = topk_group; args.local_expert_offset = local_expert_offset; args.local_num_experts = local_num_experts; args.routed_scaling_factor = routed_scaling_factor; args.intermediate_size = intermediate_size; args.mUseDeepSeekFp8 = true; // allocate workspace for routing kernel at::Tensor num_tokens_per_expert = at::detail::empty_cuda({num_experts}, at::ScalarType::Int, routing_logits.device(), std::nullopt); int32_t max_num_padded_tokens = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::getMaxPermutedPaddedCount( args.num_tokens, top_k, num_experts, tile_tokens_dim); at::Tensor total_num_padded_tokens = at::empty({}, at::TensorOptions().device(routing_logits.device()).dtype(at::ScalarType::Int)); at::Tensor expanded_idx_to_permuted_idx = at::detail::empty_cuda( {args.num_tokens * args.top_k}, at::ScalarType::Int, routing_logits.device(), std::nullopt); at::Tensor permuted_idx_to_token_idx = at::detail::empty_cuda({max_num_padded_tokens}, at::ScalarType::Int, routing_logits.device(), std::nullopt); at::Tensor expert_weights = at::detail::empty_cuda( {args.num_tokens, args.top_k}, routing_bias.scalar_type(), routing_logits.device(), std::nullopt); at::Tensor expert_indexes = at::detail::empty_cuda( {args.num_tokens, args.top_k}, at::ScalarType::Int, routing_logits.device(), std::nullopt); int64_t const size_of_expert_count_histogram = std::max(num_experts * 2, int64_t(256 * 2)); at::Tensor expert_count_histogram = at::detail::empty_cuda({size_of_expert_count_histogram}, at::ScalarType::Int, // 256 is the max number of threads per block and max number of experts routing_logits.device(), std::nullopt); // allocate workspace for activation/gemm/finalize kernels at::Tensor gemm1_output = at::detail::empty_cuda({max_num_padded_tokens, 2 * intermediate_size}, at::ScalarType::Float8_e4m3fn, hidden_states.device(), std::nullopt); at::Tensor gemm1_output_scale = at::detail::empty_cuda({2 * intermediate_size / 128, max_num_padded_tokens}, at::ScalarType::Float, hidden_states.device(), std::nullopt); at::Tensor activation_output = at::detail::empty_cuda({max_num_padded_tokens, intermediate_size}, at::ScalarType::Float8_e4m3fn, hidden_states.device(), std::nullopt); at::Tensor activation_output_scale = at::detail::empty_cuda( {intermediate_size / 128, max_num_padded_tokens}, at::ScalarType::Float, hidden_states.device(), std::nullopt); at::Tensor gemm2_output = at::detail::empty_cuda( {max_num_padded_tokens, args.hidden_size}, at::ScalarType::BFloat16, hidden_states.device(), std::nullopt); int32_t max_num_ctas = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::getMaxNumCtasInBatchDim( args.num_tokens, args.top_k, args.num_experts, tile_tokens_dim); at::Tensor cta_idx_xy_to_batch_idx = at::detail::empty_cuda({max_num_ctas}, at::ScalarType::Int, routing_logits.device(), std::nullopt); at::Tensor cta_idx_xy_to_mn_limit = at::detail::empty_cuda({max_num_ctas}, at::ScalarType::Int, routing_logits.device(), std::nullopt); at::Tensor num_non_exiting_ctas = at::empty({}, at::TensorOptions().device(routing_logits.device()).dtype(at::ScalarType::Int)); tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::Routing::Runner routing_runner(tile_tokens_dim); auto const& stream = at::cuda::getCurrentCUDAStream(routing_logits.get_device()); routing_runner.run(routing_logits.data_ptr(), routing_bias.data_ptr(), args.num_tokens, args.num_experts, args.top_k, args.n_group, args.topk_group, args.local_expert_offset, args.local_num_experts, args.routed_scaling_factor, expert_indexes.data_ptr(), expert_count_histogram.data_ptr(), total_num_padded_tokens.data_ptr(), expanded_idx_to_permuted_idx.data_ptr(), nullptr /*permuted_idx_to_expanded_idx.data_ptr()*/, permuted_idx_to_token_idx.data_ptr(), expert_weights.data_ptr(), num_tokens_per_expert.data_ptr(), cta_idx_xy_to_batch_idx.data_ptr(), cta_idx_xy_to_mn_limit.data_ptr(), num_non_exiting_ctas.data_ptr(), args.mDtypeElt, false, true, static_cast(routing_method_type), stream); // MoE kernel except routing TORCH_CHECK(hidden_states.scalar_type() == at::ScalarType::Float8_e4m3fn, "hidden_states must be fp8."); TORCH_CHECK(hidden_states_scale.scalar_type() == at::ScalarType::Float, "hidden_states_scale must be float."); TORCH_CHECK(hidden_states_scale.dim() == 2, "hidden_states_scale must be 2D."); TORCH_CHECK( hidden_states_scale.sizes()[0] == hidden_states.sizes()[1] / 128, "hidden_states_scale has incorrect shape."); TORCH_CHECK(gemm1_weights.scalar_type() == at::ScalarType::Float8_e4m3fn, "gemm1_weights must be fp8."); TORCH_CHECK(gemm1_weights.dim() == 3, "gemm1_weights must be 3D."); TORCH_CHECK(gemm1_weights.sizes()[1] % 2 == 0, "the second dimension of weights must be even."); TORCH_CHECK(intermediate_size == gemm1_weights.sizes()[1] / 2, "intermediate_size has incorrect shape."); TORCH_CHECK(gemm1_weights.sizes()[2] == hidden_states.sizes()[1], "the third dimension of weights must be equal to hidden_size."); TORCH_CHECK(gemm1_weights_scale.scalar_type() == at::ScalarType::Float, "gemm1_weights_scale must be float."); TORCH_CHECK(gemm1_weights_scale.dim() == 3, "gemm1_weights_scale must be 3D."); TORCH_CHECK(gemm1_weights_scale.sizes()[0] == local_num_experts, "gemm1_weights_scale has incorrect shape."); TORCH_CHECK(intermediate_size % 128 == 0, "the second dimension of weights must be a multiple of 128."); TORCH_CHECK( gemm1_weights_scale.sizes()[1] == 2 * intermediate_size / 128, "gemm1_weights_scale has incorrect shape."); TORCH_CHECK(gemm1_weights_scale.sizes()[2] == args.hidden_size / 128, "gemm1_weights_scale has incorrect shape."); TORCH_CHECK(gemm2_weights.scalar_type() == at::ScalarType::Float8_e4m3fn, "gemm2_weights must be fp8."); TORCH_CHECK(gemm2_weights.dim() == 3, "gemm2_weights must be 3D."); TORCH_CHECK(gemm2_weights.sizes()[2] == intermediate_size, "the third dimension of weights must be equal to intermediate_size."); TORCH_CHECK(gemm2_weights_scale.scalar_type() == at::ScalarType::Float, "gemm2_weights_scale must be float."); TORCH_CHECK(gemm2_weights_scale.dim() == 3, "gemm2_weights_scale must be 3D."); TORCH_CHECK(gemm2_weights_scale.sizes()[0] == local_num_experts, "gemm2_weights_scale has incorrect shape."); TORCH_CHECK(gemm2_weights_scale.sizes()[1] == args.hidden_size / 128, "gemm2_weights_scale has incorrect shape."); TORCH_CHECK(gemm2_weights_scale.sizes()[2] == intermediate_size / 128, "gemm2_weights_scale has incorrect shape."); // allocate output at::Tensor output = at::detail::empty_cuda( {args.num_tokens, args.hidden_size}, at::ScalarType::BFloat16, hidden_states.device(), std::nullopt); // setup workspace workspace.total_num_padded_tokens = total_num_padded_tokens.data_ptr(); workspace.total_max_padded_tokens = max_num_padded_tokens; workspace.ProjUpTileN = tile_tokens_dim; workspace.routing_expert_indexes = expert_indexes.data_ptr(); workspace.permuted_idx_size = total_num_padded_tokens.data_ptr(); workspace.expanded_idx_to_permuted_idx = expanded_idx_to_permuted_idx.data_ptr(); // Needed by activation/finalize kernels workspace.permuted_idx_to_token_idx = permuted_idx_to_token_idx.data_ptr(); // Needed by permuteGemm1 kernel workspace.expert_weights = expert_weights.data_ptr(); // Consumed by finalize kernel workspace.cta_idx_xy_to_batch_idx = cta_idx_xy_to_batch_idx.data_ptr(); workspace.cta_idx_xy_to_mn_limit = cta_idx_xy_to_mn_limit.data_ptr(); workspace.num_non_exiting_ctas = num_non_exiting_ctas.data_ptr(); // gemm1 intermediate ws workspace.gemm1_output = gemm1_output.data_ptr(); workspace.gemm1_output_scale = gemm1_output_scale.data_ptr(); // activation intermediate ws workspace.activation_output = activation_output.data_ptr(); workspace.activation_output_scale = activation_output_scale.data_ptr(); // gemm2 intermediate ws workspace.gemm2_output = gemm2_output.data_ptr(); workspace.gemm2_output_scale = nullptr; args.output = output.data_ptr(); args.output_scale = nullptr; auto workspace_sizes = moe_runner.getWorkspaceSizeInBytes(args, moeConfigIndex); at::Tensor workspace_fc1 = at::detail::empty_cuda( {std::get<0>(workspace_sizes)}, at::ScalarType::Char, hidden_states.device(), std::nullopt); at::Tensor workspace_fc2 = at::detail::empty_cuda( {std::get<1>(workspace_sizes)}, at::ScalarType::Char, hidden_states.device(), std::nullopt); workspace.bmm1_workspace = workspace_fc1.data_ptr(); workspace.bmm2_workspace = workspace_fc2.data_ptr(); auto const& moe_stream = at::cuda::getCurrentCUDAStream(hidden_states.get_device()); moe_runner.run(args, workspace, hidden_states.get_device(), moe_stream, moeConfigIndex); return output; } // Wrapped the TRTLLM-Gen kernel runner in a Torch custom class to allow // use with the torch workflow autotuner class. class FP8BlockScaleMoeRunner : public torch::CustomClassHolder { public: explicit FP8BlockScaleMoeRunner(int64_t tileTokensDim) : mTileTokensDim(tileTokensDim) { mRunner = std::make_unique(mDtypeElt, mUseDeepSeekFp8, mTileTokensDim); } [[nodiscard]] std::vector getValidConfigs( int64_t topK, int64_t hiddenSize, int64_t intermediateSize, int64_t numLocalExperts, int64_t numTokens) const { return mRunner->getValidConfigIndices(topK, hiddenSize, intermediateSize, numLocalExperts, numTokens); } [[nodiscard]] at::Tensor run(at::Tensor const& routing_logits, at::Tensor const& routing_bias, at::Tensor const& hidden_states, at::Tensor const& hidden_states_scale, at::Tensor const& gemm1_weights, at::Tensor const& gemm1_weights_scale, at::Tensor const& gemm2_weights, at::Tensor const& gemm2_weights_scale, int64_t num_experts, int64_t top_k, int64_t n_group, int64_t topk_group, int64_t intermediate_size, int64_t local_expert_offset, int64_t local_num_experts, double routed_scaling_factor, int64_t routing_method_type, int64_t moeConfigIndex) { // Autotuner has requested a default or 'fallback' config index if (moeConfigIndex == -1) { auto const num_tokens = hidden_states.sizes()[0]; auto const hidden_size = hidden_states.sizes()[1]; moeConfigIndex = mRunner->getDefaultValidConfigIndex( top_k, hidden_size, intermediate_size, local_num_experts, num_tokens); } return run_fp8_block_scale_moe(routing_logits, routing_bias, hidden_states, hidden_states_scale, gemm1_weights, gemm1_weights_scale, gemm2_weights, gemm2_weights_scale, num_experts, top_k, n_group, topk_group, intermediate_size, local_expert_offset, local_num_experts, routed_scaling_factor, mTileTokensDim, routing_method_type, *mRunner, moeConfigIndex); } private: using RunnerType = tensorrt_llm::kernels::trtllmGenFp8BlockScaleMoe::MoE::Runner; std::unique_ptr mRunner; btg::Dtype mDtypeElt{btg::Dtype::E4m3}; // FP8 runner so hard-coded bool mUseDeepSeekFp8{true}; // Always true for BlockScaleMoe int64_t mTileTokensDim; }; } // namespace torch_ext TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.class_("FP8BlockScaleMoERunner") .def(torch::init()) .def("get_valid_configs", &torch_ext::FP8BlockScaleMoeRunner::getValidConfigs) .def("run_moe", &torch_ext::FP8BlockScaleMoeRunner::run); }