Source code for tensorrt_llm.layers.mlp

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np

from .._utils import trt_dtype_to_np
from ..functional import ACT2FN
from ..module import Module
from ..quantization import QuantMode
from ..quantization.layers import FP8Linear, FP8RowLinear
from .linear import ColumnLinear, RowLinear


[docs] class MLP(Module): def __init__(self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), instance_id: int = 0): super().__init__() if hidden_act not in ACT2FN: raise ValueError( 'unsupported activation function: {}'.format(hidden_act)) fc_output_size = 2 * ffn_hidden_size if hidden_act == 'swiglu' else ffn_hidden_size self.use_fp8_qdq = quant_mode.has_fp8_qdq() if self.use_fp8_qdq: self.fc = FP8Linear(hidden_size, fc_output_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.proj = FP8RowLinear(ffn_hidden_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, instance_id=instance_id) else: self.fc = ColumnLinear(hidden_size, fc_output_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.proj = RowLinear(ffn_hidden_size, hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, instance_id=instance_id) self.hidden_act = hidden_act self.dtype = dtype
[docs] def forward(self, hidden_states, workspace=None): inter = self.fc(hidden_states) inter = ACT2FN[self.hidden_act](inter) output = self.proj(inter, workspace) return output
[docs] class GatedMLP(MLP): def __init__(self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), instance_id: int = 0): self.use_fp8_qdq = quant_mode.has_fp8_qdq() super().__init__(hidden_size, ffn_hidden_size, hidden_act, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=quant_mode, instance_id=instance_id) self.hidden_size = hidden_size self.ffn_hidden_size = ffn_hidden_size self.hidden_act = hidden_act self.bias = bias self.dtype = dtype self.tp_group = tp_group self.tp_size = tp_size self.quant_mode = quant_mode self.instance_id = instance_id if self.use_fp8_qdq: self.gate = FP8Linear(hidden_size, ffn_hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False) else: self.gate = ColumnLinear(hidden_size, ffn_hidden_size, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, gather_output=False)
[docs] def forward(self, hidden_states, workspace=None): inter = self.fc(hidden_states) inter = ACT2FN[self.hidden_act](inter) gate = self.gate(hidden_states) output = self.proj(inter * gate, workspace) return output
[docs] class FusedGatedMLP(GatedMLP): def __init__(self, hidden_size, ffn_hidden_size, hidden_act, bias=True, dtype=None, tp_group=None, tp_size=1, quant_mode=QuantMode(0), instance_id: int = 0): super().__init__(hidden_size, ffn_hidden_size, hidden_act, bias=bias, dtype=dtype, tp_group=tp_group, tp_size=tp_size, quant_mode=quant_mode, instance_id=instance_id)
[docs] def forward(self, hidden_states, workspace=None): # Combine the following pattern # # SiLU(FC(x)) + Gate(x) # # into: # # SwiGLU(FusedFC(x)) # # Upside is we don't need to modify 4 different weight loading paths just to concat weights _np_dtype = trt_dtype_to_np(self.dtype) concat_weight = np.concatenate( [self.gate.weight.raw_value, self.fc.weight.raw_value], axis=0).astype(_np_dtype) if self.bias: concat_bias = np.concatenate( [self.gate.bias.raw_value, self.fc.bias.raw_value], axis=0).astype(_np_dtype) if self.use_fp8_qdq: gate_weights_scaling_factor = self.gate.weights_scaling_factor.raw_value fc_weights_scaling_factor = self.fc.weights_scaling_factor.raw_value fc_activation_scaling_factor = self.fc.activation_scaling_factor.raw_value gate_activation_scaling_factor = self.gate.activation_scaling_factor.raw_value assert fc_activation_scaling_factor == gate_activation_scaling_factor, "Activation scales should be identical" # Remove dangling TRT-LLM parameter references after the graph rewrite. for param, _ in list(self.gate.named_parameters()): self.gate._parameters.pop(param) self.gate = None if self.use_fp8_qdq: self.fc = FP8Linear(self.hidden_size, self.ffn_hidden_size * 2, bias=self.bias, dtype=self.dtype, tp_group=self.tp_group, tp_size=self.tp_size, gather_output=False) else: self.fc = ColumnLinear(self.hidden_size, self.ffn_hidden_size * 2, bias=self.bias, dtype=self.dtype, tp_group=self.tp_group, tp_size=self.tp_size, gather_output=False) self.fc.weight.value = concat_weight if self.use_fp8_qdq: self.fc.activation_scaling_factor.value = fc_activation_scaling_factor # TODO: need to align with quantization toolkit; preferably put a constraint to equalize # fc/gate weight scaling factor to allow horizontal fusion without accuracy loss self.fc.weights_scaling_factor.value = max( gate_weights_scaling_factor, fc_weights_scaling_factor) if self.bias: self.fc.bias.value = concat_bias inter = self.fc(hidden_states) if self.hidden_act == 'silu': inter = ACT2FN['swiglu'](inter) else: raise NotImplementedError( f"Activation {self.hidden_act} not yet implemented for FusedGatedMLP" ) output = self.proj(inter, workspace) return output