Source code for tensorrt_llm.models.bloom.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorrt as trt

from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import Tensor, gather_last_token_logits
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
                       ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm,
                       PositionEmbeddingType)
from ...mapping import Mapping
from ...module import Module, ModuleList
from ...quantization import QuantMode
from ..generation_mixin import GenerationMixin


class BloomDecoderLayer(Module):

    def __init__(self,
                 hidden_size,
                 num_attention_heads,
                 max_position_embeddings,
                 num_layers,
                 dtype=None,
                 attention_mask_type=AttentionMaskType.causal,
                 hidden_act='gelu',
                 position_embedding_type=PositionEmbeddingType.alibi,
                 quant_mode=QuantMode(0),
                 mlp_hidden_size=None,
                 bias=True,
                 multi_query_mode=False,
                 tp_group=None,
                 tp_size=1,
                 tp_rank=0):
        super().__init__()
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.max_position_embeddings = max_position_embeddings
        self.num_layers = num_layers
        self.dtype = dtype
        self.attention_mask_type = attention_mask_type
        self.hidden_act = hidden_act
        self.position_embedding_type = position_embedding_type
        self.tp_group = tp_group
        self.tp_size = tp_size
        self.tp_rank = tp_rank
        self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
                                         dtype=dtype)

        self.attention = Attention(
            hidden_size,
            num_attention_heads,
            1 if multi_query_mode else num_attention_heads,
            max_position_embeddings,
            num_layers,
            dtype=dtype,
            attention_mask_type=AttentionMaskType.causal,
            position_embedding_type=position_embedding_type,
            bias=bias,
            tp_group=tp_group,
            tp_size=tp_size,
            tp_rank=tp_rank,
            use_int8_kv_cache=quant_mode.has_int8_kv_cache(),
            quant_mode=quant_mode)

        if mlp_hidden_size is None:
            mlp_hidden_size = hidden_size * 4

        self.mlp = MLP(hidden_size=hidden_size,
                       ffn_hidden_size=mlp_hidden_size,
                       hidden_act=hidden_act,
                       dtype=dtype,
                       bias=bias,
                       tp_group=tp_group,
                       tp_size=tp_size,
                       quant_mode=quant_mode)
        self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
                                        dtype=dtype)

    def forward(self,
                hidden_states: Tensor,
                attention_mask=None,
                use_cache=False,
                kv_cache_params=None,
                attention_params=None):

        assert isinstance(hidden_states, Tensor)

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        attention_output = self.attention(hidden_states,
                                          attention_mask=attention_mask,
                                          use_cache=use_cache,
                                          kv_cache_params=kv_cache_params,
                                          attention_params=attention_params)

        if use_cache:
            attention_output, presents = attention_output

        hidden_states = residual + attention_output

        residual = hidden_states
        hidden_states = self.post_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states)

        hidden_states = residual + hidden_states

        if use_cache:
            return (hidden_states, presents)
        return hidden_states


[docs] class BloomModel(Module): def __init__(self, num_layers, num_heads, hidden_size, vocab_size, hidden_act, max_position_embeddings, dtype=None, mapping=Mapping(), mlp_hidden_size=None, bias=True, quant_mode=QuantMode(0), multi_query_mode=False, use_parallel_embedding=False, embedding_sharding_dim=0): super().__init__() if use_parallel_embedding: self.embedding = Embedding(vocab_size, hidden_size, dtype=dtype, tp_group=mapping.tp_group, tp_size=mapping.tp_size, sharding_dim=embedding_sharding_dim, tp_rank=mapping.tp_rank) else: self.embedding = Embedding(vocab_size, hidden_size, dtype=dtype) self.ln_embed = LayerNorm(normalized_shape=hidden_size, dtype=dtype) self.layers = ModuleList([ BloomDecoderLayer(hidden_size=hidden_size, num_attention_heads=num_heads, max_position_embeddings=max_position_embeddings, num_layers=num_layers, dtype=dtype, attention_mask_type=AttentionMaskType.causal, hidden_act=hidden_act, multi_query_mode=multi_query_mode, tp_group=mapping.tp_group, tp_size=mapping.tp_size, tp_rank=mapping.tp_rank, mlp_hidden_size=mlp_hidden_size, bias=bias, quant_mode=quant_mode) for _ in range(num_layers) ]) self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None): hidden_states = self.embedding(input_ids) hidden_states = self.ln_embed(hidden_states) kv_cache_params.fill_none_tensor_list(len(self.layers)) if use_cache: presents = [] for layer, past, max_kv_cache_length in zip( self.layers, kv_cache_params.past_key_value, kv_cache_params.host_max_kv_cache_lengths): hidden_states = layer( hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=KeyValueCacheParams( past_key_value=[past], host_past_key_value_lengths=kv_cache_params. host_past_key_value_lengths, host_max_kv_cache_lengths=max_kv_cache_length, cache_indirection=kv_cache_params.cache_indirection), attention_params=attention_params) if use_cache: presents.append(hidden_states[1]) hidden_states = hidden_states[0] hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class BloomForCausalLM(BloomModel, GenerationMixin): def __init__(self, num_layers, num_heads, hidden_size, vocab_size, max_position_embeddings, hidden_act='gelu', dtype=None, mapping=Mapping(), mlp_hidden_size=None, bias=True, quant_mode=QuantMode(0), multi_query_mode=False, use_parallel_embedding=False, embedding_sharding_dim=0, share_embedding_table=False): if isinstance(dtype, str): self._kv_dtype = str_dtype_to_trt(dtype) else: assert isinstance(dtype, trt.DataType) self._kv_dtype = dtype if share_embedding_table and mapping.tp_size > 1: if (not use_parallel_embedding) or (use_parallel_embedding and embedding_sharding_dim == 1): raise NotImplementedError( 'For multiple-processes cases, sharing the embedding table must set use_parallel_embedding=True and embedding_sharding_dim = 0' ) self._dtype = self._kv_dtype if quant_mode.has_int8_kv_cache(): self._kv_dtype = str_dtype_to_trt('int8') elif quant_mode.has_fp8_kv_cache(): self._kv_dtype = str_dtype_to_trt('fp8') self.mapping = mapping self.quant_mode = quant_mode self._num_layers = num_layers self._num_heads = num_heads self._hidden_size = hidden_size self._vocab_size = vocab_size self._tp_size = mapping.tp_size self._multi_query_mode = multi_query_mode super().__init__(num_layers, num_heads, hidden_size, vocab_size, hidden_act, max_position_embeddings, dtype, mapping, mlp_hidden_size, bias, quant_mode, multi_query_mode, use_parallel_embedding, embedding_sharding_dim) vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size) share_weight = None if share_embedding_table: share_weight = self.embedding.weight self.lm_head = ColumnLinear(hidden_size, vocab_size_padded, bias=False, dtype=dtype, tp_group=mapping.tp_group, tp_size=mapping.tp_size, gather_output=True, share_weight=share_weight)
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, last_token_ids=None, attention_mask=None, kv_cache_params=None, attention_params=None): hidden_states = super().forward(input_ids, position_ids, use_cache, attention_mask, kv_cache_params, attention_params) if use_cache: hidden_states, presents = hidden_states hidden_states = gather_last_token_logits( hidden_states, last_token_ids, default_net().plugin_config.remove_input_padding) # [batch_size, hidden_size] -> [batch_size, vocab_size] lm_logits = self.lm_head(hidden_states) lm_logits.mark_output('logits', self._dtype) if use_cache and default_net().plugin_config.paged_kv_cache == False: for i, present in enumerate(presents): present.mark_output(f'present_key_value_{i}', self._kv_dtype) return (lm_logits, presents) return lm_logits
[docs] def prepare_inputs(self, max_batch_size, max_input_len, max_new_tokens, use_cache, max_beam_width: int = 1): '''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the ranges of the dimensions of when using TRT dynamic shapes. @return: a list contains values which can be fed into the self.forward() ''' # Prepare inputs head_size = self._hidden_size // self._num_heads num_heads = self._num_heads // self._tp_size remove_input_padding = default_net().plugin_config.remove_input_padding use_gpt_attention_plugin = default_net( ).plugin_config.gpt_attention_plugin use_gemm_plugin = default_net().plugin_config.gemm_plugin model_inputs = self.prepare_basic_inputs( max_batch_size, max_beam_width, max_input_len, max_new_tokens, num_heads, head_size, self._num_layers, self._kv_dtype, remove_input_padding, use_gpt_attention_plugin, use_gemm_plugin=use_gemm_plugin) return (model_inputs['input_ids'], model_inputs['position_ids'], True, model_inputs['last_token_ids'], model_inputs['attention_mask'], KeyValueCacheParams( past_key_value=model_inputs['past_key_value'], host_past_key_value_lengths=model_inputs[ 'host_past_key_value_lengths'], host_max_kv_cache_lengths=model_inputs[ 'host_max_kv_cache_lengths'], cache_indirection=model_inputs['cache_indirection'], ), AttentionParams( sequence_length=model_inputs['sequence_length'], context_lengths=model_inputs['context_lengths'], host_context_lengths=model_inputs['host_context_lengths'], max_context_length=max_input_len, host_request_types=model_inputs['host_request_types']))