Source code for tensorrt_llm.models.falcon.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union

import tensorrt as trt

from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import Tensor, gather_last_token_logits, recv, send
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
                       ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm,
                       PositionEmbeddingType)
from ...mapping import Mapping
from ...module import Module, ModuleList
from ...quantization import QuantMode
from ..generation_mixin import GenerationMixin


class FalconDecoderLayer(Module):

    def __init__(
        self,
        hidden_size,
        num_attention_heads,
        max_position_embeddings,
        num_attention_kv_heads=None,
        dtype=None,
        hidden_act='gelu',
        quant_mode=QuantMode(0),
        mlp_hidden_size=None,
        bias=True,
        use_alibi=True,
        new_decoder_architecture=False,
        parallel_attention=False,
        layernorm_epsilon=1e-5,
        tp_group=None,
        tp_size=1,
        tp_rank=0,
        layer_id=None,
    ):
        super().__init__()
        self._layer_id = layer_id  # useful for debugging
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        self.num_attention_kv_heads = num_attention_kv_heads
        self.max_position_embeddings = max_position_embeddings
        self.dtype = dtype
        self.hidden_act = hidden_act
        self.tp_group = tp_group
        self.tp_size = tp_size
        self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
                                         eps=layernorm_epsilon,
                                         dtype=dtype)
        if use_alibi:
            # Note falcon models will also scale alibi with inv_sqrt_Dh
            position_embedding_type = PositionEmbeddingType.alibi_with_scale
        else:
            position_embedding_type = PositionEmbeddingType.rope_gpt_neox

        self.attention = Attention(
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            num_kv_heads=num_attention_kv_heads,
            max_position_embeddings=max_position_embeddings,
            dtype=dtype,
            attention_mask_type=AttentionMaskType.causal,
            bias=bias,
            position_embedding_type=position_embedding_type,
            tp_group=tp_group,
            tp_size=tp_size,
            tp_rank=tp_rank,
            use_int8_kv_cache=quant_mode.has_int8_kv_cache(),
            quant_mode=quant_mode,
            instance_id=2 * layer_id,
        )

        if mlp_hidden_size is None:
            mlp_hidden_size = hidden_size * 4

        self.new_decoder_architecture = new_decoder_architecture
        self.parallel_attn = parallel_attention

        if self.new_decoder_architecture:
            # Layernorm before MLP.
            self.mlp_layernorm = LayerNorm(normalized_shape=hidden_size,
                                           eps=layernorm_epsilon,
                                           dtype=dtype)
        else:
            self.mlp_layernorm = None
        self.mlp = MLP(
            hidden_size=hidden_size,
            ffn_hidden_size=mlp_hidden_size,
            hidden_act=hidden_act,
            dtype=dtype,
            bias=bias,
            tp_group=tp_group,
            tp_size=tp_size,
            quant_mode=quant_mode,
            instance_id=2 * layer_id + 1,
        )
        if self.new_decoder_architecture or self.parallel_attn:
            self.post_layernorm = None
        else:
            self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
                                            dtype=dtype)

    def forward(self,
                hidden_states: Tensor,
                attention_mask=None,
                use_cache=False,
                kv_cache_params=None,
                attention_params=None,
                all_reduce_workspace=None):
        assert isinstance(hidden_states, Tensor)

        residual = hidden_states

        if self.new_decoder_architecture:
            mlp_ln_output = self.mlp_layernorm(hidden_states)
        hidden_states = self.input_layernorm(hidden_states)
        input_ln_output = hidden_states
        attention_output = self.attention(hidden_states,
                                          attention_mask=attention_mask,
                                          use_cache=use_cache,
                                          kv_cache_params=kv_cache_params,
                                          attention_params=attention_params,
                                          workspace=all_reduce_workspace)

        if use_cache:
            attention_output, presents = attention_output

        if not self.new_decoder_architecture:
            if self.parallel_attn:
                hidden_states = input_ln_output
            else:
                hidden_states = residual + attention_output
                residual = hidden_states
                hidden_states = self.post_layernorm(hidden_states)
        else:
            hidden_states = mlp_ln_output

        hidden_states = self.mlp(hidden_states, all_reduce_workspace)

        if self.new_decoder_architecture or self.parallel_attn:
            hidden_states = hidden_states + attention_output

        hidden_states = residual + hidden_states
        if use_cache:
            return hidden_states, presents
        return hidden_states


[docs] class FalconModel(Module): def __init__( self, num_layers: int, num_heads: int, hidden_size: int, vocab_size: int, hidden_act: int, max_position_embeddings: int, dtype: Optional[Union[str, trt.DataType]] = None, mapping: Mapping = Mapping(), num_kv_heads: Optional[int] = None, mlp_hidden_size: Optional[int] = None, bias: bool = True, quant_mode: QuantMode = QuantMode(0), use_alibi: bool = True, parallel_attention: bool = False, new_decoder_architecture: bool = False, ): super().__init__() self.num_layers = num_layers self.num_heads = num_heads self.num_kv_heads = num_kv_heads or num_heads self.hidden_size = hidden_size self.vocab_size = vocab_size self.mapping = mapping # Falcon variants self.parallel_attention = parallel_attention self.new_decoder_architecture = new_decoder_architecture self.quant_mode = quant_mode assert isinstance(dtype, (str, trt.DataType)) if isinstance(dtype, str): self.dtype = str_dtype_to_trt(dtype) else: self.dtype = dtype if self.quant_mode.has_int8_kv_cache(): self.kv_dtype = str_dtype_to_trt('int8') elif quant_mode.has_fp8_kv_cache(): self.kv_dtype = str_dtype_to_trt('fp8') else: self.kv_dtype = self.dtype if self.mapping.is_first_pp_rank(): self.embedding = Embedding(vocab_size, hidden_size, dtype=dtype) self.layers = ModuleList([ FalconDecoderLayer( hidden_size=hidden_size, num_attention_heads=num_heads, max_position_embeddings=max_position_embeddings, dtype=dtype, bias=bias, quant_mode=self.quant_mode, hidden_act=hidden_act, num_attention_kv_heads=self.num_kv_heads, mlp_hidden_size=mlp_hidden_size, use_alibi=use_alibi, parallel_attention=parallel_attention, new_decoder_architecture=new_decoder_architecture, tp_group=mapping.tp_group, tp_size=mapping.tp_size, tp_rank=mapping.tp_rank, layer_id=i, ) for i in self.get_transformer_layers(self.mapping, num_layers) ]) if self.mapping.is_last_pp_rank(): self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, attention_mask=None, kv_cache_params=None, attention_params=None, hidden_states=None, all_reduce_workspace=None): kv_cache_params.fill_none_tensor_list(len(self.layers)) if use_cache: presents = [] if self.mapping.is_first_pp_rank(): hidden_states = self.embedding(input_ids) else: hidden_states = recv(hidden_states, self.mapping.prev_pp_rank()) for layer, past, pointer, max_kv_cache_length in zip( self.layers, kv_cache_params.past_key_value, kv_cache_params.kv_cache_block_pointers, kv_cache_params.host_max_kv_cache_lengths): hidden_states = layer( hidden_states, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=KeyValueCacheParams( past_key_value=[past], host_past_key_value_lengths=kv_cache_params. host_past_key_value_lengths, host_max_kv_cache_lengths=max_kv_cache_length, kv_cache_block_pointers=[pointer], cache_indirection=kv_cache_params.cache_indirection), attention_params=attention_params, all_reduce_workspace=all_reduce_workspace) if use_cache: presents.append(hidden_states[1]) hidden_states = hidden_states[0] if self.mapping.is_last_pp_rank(): hidden_states = self.ln_f(hidden_states) else: hidden_states = send(hidden_states, self.mapping.next_pp_rank()) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class FalconForCausalLM(FalconModel, GenerationMixin): def __init__(self, num_layers: int, num_heads: int, hidden_size: int, vocab_size: int, max_position_embeddings: int, hidden_act: str = 'gelu', dtype: Optional[Union[str, trt.DataType]] = None, num_kv_heads: Optional[int] = None, mlp_hidden_size: Optional[int] = None, bias: bool = True, quant_mode: QuantMode = QuantMode(0), use_alibi: bool = True, parallel_attention: bool = False, new_decoder_architecture: bool = False, logits_dtype: Union[str, trt.DataType] = 'float32', mapping=Mapping()): super().__init__(num_layers=num_layers, num_heads=num_heads, hidden_size=hidden_size, vocab_size=vocab_size, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, dtype=dtype, num_kv_heads=num_kv_heads, mlp_hidden_size=mlp_hidden_size, bias=bias, quant_mode=quant_mode, mapping=mapping, use_alibi=use_alibi, parallel_attention=parallel_attention, new_decoder_architecture=new_decoder_architecture) # TODO: For compatibility to quantization modules. Remove it later. self._num_layers = num_layers vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size) if self.mapping.is_last_pp_rank(): self.lm_head = ColumnLinear( hidden_size, vocab_size_padded, bias=False, dtype=dtype, tp_group=mapping.tp_group, tp_size=mapping.tp_size, gather_output=True, ) if isinstance(logits_dtype, str): self.logits_dtype = str_dtype_to_trt(logits_dtype) else: assert isinstance(logits_dtype, trt.DataType) self.logits_dtype = logits_dtype
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, last_token_ids=None, attention_mask=None, kv_cache_params=None, attention_params=None, hidden_states=None, all_reduce_workspace=None): hidden_states = super().forward( input_ids=input_ids, position_ids=position_ids, use_cache=use_cache, attention_mask=attention_mask, kv_cache_params=kv_cache_params, attention_params=attention_params, hidden_states=hidden_states, all_reduce_workspace=all_reduce_workspace) if use_cache: hidden_states, presents = hidden_states if self.mapping.is_last_pp_rank(): hidden_states = gather_last_token_logits( hidden_states, last_token_ids, default_net().plugin_config.remove_input_padding, ) # [batch_size, hidden_size] -> [batch_size, vocab_size] lm_logits = self.lm_head(hidden_states) lm_logits.mark_output('logits', self.logits_dtype) else: hidden_states.mark_output('hidden_states_output', self.dtype) if use_cache and default_net().plugin_config.paged_kv_cache == False: for i, present in zip( self.get_transformer_layers(self.mapping, self.num_layers), presents): present.mark_output(f'present_key_value_{i}', self.kv_dtype) if self.mapping.is_last_pp_rank(): return lm_logits, presents else: return hidden_states, presents else: if self.mapping.is_last_pp_rank(): return lm_logits else: return hidden_states
[docs] def prepare_inputs(self, max_batch_size: int, max_input_len: int, max_new_tokens: int, use_cache: bool, max_beam_width: int = 1, max_num_tokens: int = None): ''' @brief: Prepare inputs Tensors for the model, the given sizes are used to determine the ranges of the dimensions of when using TRT dynamic shapes. @return: a list contains values which can be fed into the self.forward() ''' # Prepare inputs head_size = self.hidden_size // self.num_heads plugin_config = default_net().plugin_config use_gpt_attention_plugin = plugin_config.gpt_attention_plugin remove_input_padding = plugin_config.remove_input_padding use_gemm_plugin = plugin_config.gemm_plugin paged_kv_cache = plugin_config.paged_kv_cache tokens_per_block = plugin_config.tokens_per_block use_custom_all_reduce = plugin_config.use_custom_all_reduce model_inputs = self.prepare_basic_inputs( max_batch_size=max_batch_size, max_beam_width=max_beam_width, max_input_len=max_input_len, max_new_tokens=max_new_tokens, num_kv_heads=self.num_kv_heads, head_size=head_size, num_layers=self.num_layers, kv_dtype=self.kv_dtype, remove_input_padding=remove_input_padding, use_gpt_attention_plugin=use_gpt_attention_plugin, use_gemm_plugin=use_gemm_plugin, use_custom_all_reduce=use_custom_all_reduce, paged_kv_cache=paged_kv_cache, tokens_per_block=tokens_per_block, dtype=self.dtype, num_heads=self.num_heads, mapping=self.mapping, max_num_tokens=max_num_tokens) return ( model_inputs['input_ids'], model_inputs['position_ids'], use_cache, model_inputs['last_token_ids'], model_inputs['attention_mask'], KeyValueCacheParams( past_key_value=model_inputs['past_key_value'], host_past_key_value_lengths=model_inputs[ 'host_past_key_value_lengths'], host_max_kv_cache_lengths=model_inputs[ 'host_max_kv_cache_lengths'], kv_cache_block_pointers=model_inputs[ 'kv_cache_block_pointers_list'], cache_indirection=model_inputs['cache_indirection']), AttentionParams( sequence_length=model_inputs['sequence_length'], context_lengths=model_inputs['context_lengths'], host_context_lengths=model_inputs['host_context_lengths'], max_context_length=max_input_len, host_request_types=model_inputs['host_request_types']), model_inputs['hidden_states_input'], model_inputs['all_reduce_workspace'], )