Source code for tensorrt_llm.models.gptneox.model

# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tensorrt as trt

from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import (PositionEmbeddingType, Tensor,
                           gather_last_token_logits)
from ...layers import (MLP, Attention, AttentionMaskType, AttentionParams,
                       ColumnLinear, Embedding, KeyValueCacheParams, LayerNorm)
from ...mapping import Mapping
from ...module import Module, ModuleList
from ..generation_mixin import GenerationMixin


class GPTNeoXDecoderLayer(Module):

    def __init__(self,
                 hidden_size,
                 num_attention_heads,
                 max_position_embeddings,
                 num_layers,
                 rotary_dim,
                 dtype=None,
                 apply_query_key_layer_scaling=False,
                 attention_mask_type=AttentionMaskType.causal,
                 hidden_act='relu',
                 position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
                 tp_group=None,
                 tp_size=1):
        super().__init__()
        self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
                                         dtype=dtype)

        self.post_attention_layernorm = LayerNorm(normalized_shape=hidden_size,
                                                  dtype=dtype)

        self.attention = Attention(
            hidden_size=hidden_size,
            num_attention_heads=num_attention_heads,
            rotary_embedding_percentage=rotary_dim /
            (hidden_size // num_attention_heads),
            position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
            max_position_embeddings=max_position_embeddings,
            dtype=dtype,
            attention_mask_type=AttentionMaskType.causal,
            bias=True,
            tp_group=tp_group,
            tp_size=tp_size)

        self.mlp = MLP(hidden_size=hidden_size,
                       ffn_hidden_size=hidden_size * 4,
                       hidden_act=hidden_act,
                       dtype=dtype,
                       tp_group=tp_group,
                       tp_size=tp_size)

    def forward(self,
                hidden_states: Tensor,
                attention_mask=None,
                use_cache=False,
                kv_cache_params=None,
                attention_params=None):
        if not default_net(
        ).plugin_config.layernorm_plugin and trt.__version__[:3] == '8.6':
            raise AssertionError(
                "You need to enable the LayerNorm plugin for GPT-NeoX with TensorRT 8.6. Please set plugin_config.layernorm_plugin"
            )
        residual = hidden_states

        input_layernorm_output = self.input_layernorm(hidden_states)
        post_attention_layernorm_output = self.post_attention_layernorm(
            hidden_states)

        attention_output = self.attention(input_layernorm_output,
                                          attention_mask=attention_mask,
                                          use_cache=use_cache,
                                          kv_cache_params=kv_cache_params,
                                          attention_params=attention_params,
                                          norm_before_bmm1=True)

        if use_cache:
            attention_output, presents = attention_output

        feed_forward_hidden_states = self.mlp(post_attention_layernorm_output)
        hidden_states = attention_output + feed_forward_hidden_states + residual
        if use_cache:
            return (hidden_states, presents)
        return hidden_states


[docs] class GPTNeoXModel(Module): def __init__(self, num_layers, num_heads, hidden_size, vocab_size, hidden_act, max_position_embeddings, rotary_dim, dtype=None, position_embedding_type=PositionEmbeddingType.rope_gpt_neox, mapping=Mapping(), apply_query_key_layer_scaling=False, use_parallel_embedding=False, embedding_sharding_dim=0): super().__init__() self.embedding = Embedding( num_embeddings=vocab_size, embedding_dim=hidden_size, dtype=dtype, tp_size=mapping.tp_size if use_parallel_embedding else 1, tp_group=mapping.tp_group if use_parallel_embedding else None, sharding_dim=embedding_sharding_dim, tp_rank=mapping.rank) self.layers = ModuleList([ GPTNeoXDecoderLayer( hidden_size=hidden_size, num_attention_heads=num_heads, max_position_embeddings=max_position_embeddings, num_layers=num_layers, rotary_dim=rotary_dim, dtype=dtype, apply_query_key_layer_scaling=apply_query_key_layer_scaling, attention_mask_type=AttentionMaskType.causal, hidden_act=hidden_act, position_embedding_type=position_embedding_type, tp_group=mapping.tp_group, tp_size=mapping.tp_size) for _ in range(num_layers) ]) self.ln_f = LayerNorm(normalized_shape=hidden_size, dtype=dtype)
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, kv_cache_params=None, attention_params=None): hidden_states = self.embedding(input_ids) kv_cache_params.fill_none_tensor_list(len(self.layers)) if use_cache: presents = [] for layer, past, max_kv_cache_length in zip( self.layers, kv_cache_params.past_key_value, kv_cache_params.host_max_kv_cache_lengths): hidden_states = layer( hidden_states, use_cache=use_cache, kv_cache_params=KeyValueCacheParams( past_key_value=[past], host_past_key_value_lengths=kv_cache_params. host_past_key_value_lengths, host_max_kv_cache_lengths=max_kv_cache_length, cache_indirection=kv_cache_params.cache_indirection), attention_params=attention_params) if use_cache: presents.append(hidden_states[1]) hidden_states = hidden_states[0] hidden_states = self.ln_f(hidden_states) if use_cache: return (hidden_states, tuple(presents)) return hidden_states
[docs] class GPTNeoXForCausalLM(GPTNeoXModel, GenerationMixin): def __init__(self, num_layers, num_heads, hidden_size, vocab_size, hidden_act, max_position_embeddings, rotary_dim, dtype, position_embedding_type=PositionEmbeddingType.rope_gpt_neox, mapping=Mapping(), apply_query_key_layer_scaling=False, use_parallel_embedding=False, embedding_sharding_dim=0): if isinstance(dtype, str): self._kv_dtype = str_dtype_to_trt(dtype) else: assert isinstance(dtype, trt.DataType) self._kv_dtype = dtype self._num_layers = num_layers self._num_heads = num_heads self._hidden_size = hidden_size self._vocab_size = vocab_size self._tp_size = mapping.tp_size self._use_parallel_embedding = use_parallel_embedding self._embedding_sharding_dim = embedding_sharding_dim super().__init__( num_layers=num_layers, num_heads=num_heads, hidden_size=hidden_size, vocab_size=vocab_size, hidden_act=hidden_act, max_position_embeddings=max_position_embeddings, rotary_dim=rotary_dim, dtype=dtype, position_embedding_type=position_embedding_type, mapping=mapping, apply_query_key_layer_scaling=apply_query_key_layer_scaling, use_parallel_embedding=use_parallel_embedding, embedding_sharding_dim=embedding_sharding_dim) vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size) self.lm_head = ColumnLinear(hidden_size, vocab_size_padded, bias=False, dtype=dtype, tp_group=mapping.tp_group, tp_size=mapping.tp_size, gather_output=True)
[docs] def forward(self, input_ids: Tensor, position_ids=None, use_cache=False, last_token_ids=None, kv_cache_params=None, attention_params=None): hidden_states = super().forward(input_ids, position_ids, use_cache, kv_cache_params, attention_params) if use_cache: hidden_states, presents = hidden_states hidden_states = gather_last_token_logits( hidden_states, last_token_ids, default_net().plugin_config.remove_input_padding) # [batch_size, hidden_size] -> [batch_size, vocab_size] lm_logits = self.lm_head(hidden_states) lm_logits.mark_output('logits', self._kv_dtype) if use_cache and default_net().plugin_config.paged_kv_cache == False: for i, present in enumerate(presents): present.mark_output(f'present_key_value_{i}', self._kv_dtype) return (lm_logits, presents) return lm_logits
[docs] def prepare_inputs(self, max_batch_size, max_input_len, max_new_tokens, use_cache, max_beam_width): '''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the ranges of the dimensions of when using TRT dynamic shapes. @return: a list contains values which can be fed into the self.forward() ''' # Prepare inputs head_size = self._hidden_size // self._num_heads num_heads = self._num_heads // self._tp_size remove_input_padding = default_net().plugin_config.remove_input_padding use_gpt_attention_plugin = default_net( ).plugin_config.gpt_attention_plugin use_gemm_plugin = default_net().plugin_config.gemm_plugin model_inputs = self.prepare_basic_inputs( max_batch_size, max_beam_width, max_input_len, max_new_tokens, num_heads, head_size, self._num_layers, self._kv_dtype, remove_input_padding, use_gpt_attention_plugin, use_gemm_plugin=use_gemm_plugin) return (model_inputs['input_ids'], model_inputs['position_ids'], True, model_inputs['last_token_ids'], KeyValueCacheParams( past_key_value=model_inputs['past_key_value'], host_past_key_value_lengths=model_inputs[ 'host_past_key_value_lengths'], host_max_kv_cache_lengths=model_inputs[ 'host_max_kv_cache_lengths'], cache_indirection=model_inputs['cache_indirection'], ), AttentionParams( sequence_length=model_inputs['sequence_length'], context_lengths=model_inputs['context_lengths'], host_context_lengths=model_inputs['host_context_lengths'], max_context_length=max_input_len, host_request_types=model_inputs['host_request_types']))