/* * Copyright (c) 2019-2025, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/cudaBf16Wrapper.h" #include "tensorrt_llm/common/cudaTypeUtils.cuh" #include "tensorrt_llm/common/cudaUtils.h" #include "tensorrt_llm/common/envUtils.h" #include "tensorrt_llm/common/mathUtils.h" #include "tensorrt_llm/common/reduceKernelUtils.cuh" #include "tensorrt_llm/kernels/decoderMaskedMultiheadAttentionUtils.h" #include "tensorrt_llm/kernels/gptKernels.h" #include "tensorrt_llm/kernels/mlaKernels.h" #include #include #include #include #include using namespace tensorrt_llm::common; namespace tensorrt_llm { namespace kernels { // A stateful callback functor that maintains the running sum between consecutive scans. struct BlockPrefixCallbackOp { // Running prefix int mRunningTotal; // Constructor __device__ BlockPrefixCallbackOp(int runningTotal) : mRunningTotal(runningTotal) { } // Thread-0 is responsible for returning a value for seeding the block-wide scan. __device__ int operator()(int blockAggregate) { int oldPrefix = mRunningTotal; mRunningTotal += blockAggregate; return oldPrefix; } }; template struct VecType { using Type = T; using GPTJEltType = T; }; template <> struct VecType { using Type = float4; using GPTJEltType = float2; }; template <> struct VecType { using Type = uint4; using GPTJEltType = uint32_t; }; template <> struct VecType<__nv_bfloat16> { using Type = mmha::bf16_8_t; using GPTJEltType = __nv_bfloat162; }; struct __align__(16) fp8_16_t { __nv_fp8x4_e4m3 x; __nv_fp8x4_e4m3 y; __nv_fp8x4_e4m3 z; __nv_fp8x4_e4m3 w; }; template <> struct VecType<__nv_fp8_e4m3> { using Type = fp8_16_t; using GPTJEltType = __nv_fp8x2_e4m3; }; template struct loadPagedKVKernelTraits { static constexpr int kLoraSize = 512; static constexpr int kRopeSize = 64; static constexpr int kHeadSize = kLoraSize + kRopeSize; using VecT = typename VecType::Type; static constexpr int kBytesPerElem = sizeof(T); static constexpr int kBytesPerLoad = 16; static constexpr int kElemPerLoad = kBytesPerLoad / kBytesPerElem; static_assert((kHeadSize * kBytesPerElem) % kBytesPerLoad == 0, "kHeadSize * kBytesPerElem must be multiple of kBytesPerLoad (16Bytes)"); static constexpr int kVecPerHead = (kHeadSize * kBytesPerElem) / kBytesPerLoad; static constexpr int kThreadPerHead = kVecPerHead; // for each head, we use kThreadPerHead threads to fetch all the // kv cache data, each thread read kv cache only once. static constexpr int kTokenPerBlock = std::is_same_v ? 4 : 8; // for each block, we fetch 4 tokens for fp32, 8 tokens for other types. static constexpr int kBlockSize = kThreadPerHead * kTokenPerBlock; static constexpr int kKVThreadPerHead = (kLoraSize * kBytesPerElem) / kBytesPerLoad; }; template inline __device__ void quantCopy( __nv_fp8_e4m3* dst_global_ptr, SrcType const* src_fragment_ptr, float const scale_val = 1.f) { using DstVecType = typename std::conditional::type; using SrcType2 = typename std::conditional::Type, float2>::type; static constexpr int COPY_SIZE = sizeof(DstVecType); static constexpr int TOTAL_COPY_SIZE = NUM * sizeof(__nv_fp8_e4m3); static constexpr int LOOP_NUM = TOTAL_COPY_SIZE / COPY_SIZE; static_assert(TOTAL_COPY_SIZE % COPY_SIZE == 0); static constexpr int CVT_NUM = COPY_SIZE / sizeof(__nv_fp8_e4m3) / 2; static_assert(COPY_SIZE % (sizeof(__nv_fp8_e4m3) * 2) == 0); DstVecType fragment; int offset = 0; #pragma unroll for (int i = 0; i < LOOP_NUM; ++i) { #pragma unroll for (int j = 0; j < CVT_NUM; ++j) { float2 val2 = cuda_cast(reinterpret_cast(src_fragment_ptr)[j + offset]); val2.x *= scale_val; val2.y *= scale_val; reinterpret_cast<__nv_fp8x2_e4m3*>(&fragment)[j] = __nv_fp8x2_e4m3(val2); } reinterpret_cast(dst_global_ptr)[i] = fragment; offset += CVT_NUM; } } template inline __device__ void dequantCopy( DstType* dst_global_ptr, __nv_fp8_e4m3 const* src_fragment_ptr, float const scale_val = 1.f) { using DstVecType = typename VecType::Type; using DstType2 = typename std::conditional::Type, float2>::type; static constexpr int COPY_SIZE = sizeof(DstVecType); static constexpr int TOTAL_COPY_SIZE = NUM * sizeof(DstType); static constexpr int LOOP_NUM = TOTAL_COPY_SIZE / COPY_SIZE; static_assert(TOTAL_COPY_SIZE % COPY_SIZE == 0); static constexpr int CVT_NUM = COPY_SIZE / sizeof(DstType) / 2; static_assert(COPY_SIZE % (sizeof(DstType) * 2) == 0); DstVecType fragment; int offset = 0; #pragma unroll for (int i = 0; i < LOOP_NUM; ++i) { #pragma unroll for (int j = 0; j < CVT_NUM; ++j) { float2 val2 = cuda_cast(reinterpret_cast<__nv_fp8x2_e4m3 const*>(src_fragment_ptr)[j + offset]); val2.x *= scale_val; val2.y *= scale_val; reinterpret_cast(&fragment)[j] = cuda_cast(val2); } reinterpret_cast(dst_global_ptr)[i] = fragment; offset += CVT_NUM; } } template __global__ void applyMLARopeAndAssignQKVKernelOptContext(T* q_ptr, T* q_pe, T* k_ptr, T const* fuse_buf, KVCacheBuffer kv_cache, int q_pe_ld, int q_pe_stride, float2 const* cos_sin_cache, size_t head_num, int head_size, int c_k, int* cu_q_seqlens, int32_t const* kv_cache_lengths, uint32_t max_input_seq_len, KvCacheDataType cache_type, float const* quant_scale_kv, int32_t const* helix_position_offsets, bool absorption_mode) { // Constants. using VecT = typename VecType::Type; using GPTJEltT = typename VecType::GPTJEltType; constexpr auto HEAD_SIZE = ROPE_DIM; constexpr auto K_HEAD_SIZE = K_DIM; constexpr auto BYTES_PER_ELT = sizeof(T); constexpr auto BYTES_PER_LOAD = 16; constexpr auto ELTS_PER_VEC = BYTES_PER_LOAD / BYTES_PER_ELT; static_assert((HEAD_SIZE * BYTES_PER_ELT) % BYTES_PER_LOAD == 0, "Head size needs to be multiple of 16 bytes."); constexpr auto VECS_PER_HEAD = HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD; constexpr auto K_VECS_PER_HEAD = K_HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD; static_assert(BLOCK_SIZE % VECS_PER_HEAD == 0, "Kernel block should be able to handle entire heads."); constexpr auto TOKENS_PER_BLOCK = BLOCK_SIZE / VECS_PER_HEAD; constexpr auto K_TOKENS_PER_BLOCK = BLOCK_SIZE / K_VECS_PER_HEAD; constexpr auto TOTAL_VECS_PER_HEAD = VECS_PER_HEAD + K_VECS_PER_HEAD; // Block/Head idx. size_t const batch_idx = blockIdx.y; size_t const head_idx = blockIdx.z; // The nope head_size for q. // Use the latent_space head size in the absorption mode. int nope_head_size_q = absorption_mode ? c_k : head_size; if (head_idx < head_num) { size_t const head_dim_vec_idx = (threadIdx.x % VECS_PER_HEAD); size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC; size_t const seq_len_loop_end = size_t((max_input_seq_len + TOKENS_PER_BLOCK - 1) / TOKENS_PER_BLOCK) * TOKENS_PER_BLOCK; float quant_scale_kv_val = quant_scale_kv ? quant_scale_kv[0] : 1.f; // Mainloop. for (int local_token_idx = (threadIdx.x / VECS_PER_HEAD) + blockIdx.x * TOKENS_PER_BLOCK; local_token_idx < seq_len_loop_end; local_token_idx += TOKENS_PER_BLOCK * gridDim.x) { int const global_token_offset = cu_q_seqlens[batch_idx]; int const cache_seq_len = kv_cache_lengths[batch_idx]; // Derive cached offset and current input length int const current_seq_len = cu_q_seqlens[batch_idx + 1] - global_token_offset; int const cached_offset = cache_seq_len - current_seq_len; int token_idx_in_kv_cache = local_token_idx + cached_offset; // Check against BOTH total cache length (valid slot) AND input length (valid read) bool const valid_token = (token_idx_in_kv_cache < cache_seq_len) && (local_token_idx < current_seq_len); // Limit the token_idx to cache seq length (we need all threads in this block to be involved). token_idx_in_kv_cache = std::min(token_idx_in_kv_cache, cache_seq_len - 1); int const safe_local_token_idx = std::min(local_token_idx, current_seq_len - 1); int const global_token_idx = safe_local_token_idx + global_token_offset; auto const position_id = helix_position_offsets ? helix_position_offsets[global_token_idx] : token_idx_in_kv_cache; float2 const* rotary_coef_cache_buffer = cos_sin_cache + static_cast(ROPE_DIM) * position_id + (head_dim_idx / 2); VecT q, k; auto const src_k_global_offset = static_cast(global_token_idx) * (c_k + ROPE_DIM) + c_k; auto src_q_global_offset = static_cast(global_token_idx) * head_num * (head_size + ROPE_DIM) + (head_size + ROPE_DIM) * head_idx + head_size; // In the absorption mode, we load pe from q_pe instead of q_ptr. T* q_pe_input = q_ptr; if (absorption_mode) { q_pe_input = q_pe; src_q_global_offset = static_cast(global_token_idx) * q_pe_stride + q_pe_ld * head_idx; } q = *reinterpret_cast(&q_pe_input[src_q_global_offset + head_dim_idx]); k = *reinterpret_cast(&fuse_buf[src_k_global_offset + head_dim_idx]); // Pack two elements into one for gptj rotary embedding. #pragma unroll for (int elt_id = 0; elt_id < ELTS_PER_VEC / 2; elt_id++) { GPTJEltT& q_ = reinterpret_cast(&q)[elt_id]; GPTJEltT& k_ = reinterpret_cast(&k)[elt_id]; float2 rotary_coef_cache = rotary_coef_cache_buffer[elt_id]; mmha::apply_rotary_embedding_gptj(q_, k_, rotary_coef_cache); } // do sync __syncwarp(); if (valid_token) { if (head_idx == 0) { auto kDst = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache)); auto inBlockIdx = kv_cache.getKVLocalIdx( token_idx_in_kv_cache, 0, TOTAL_VECS_PER_HEAD, K_VECS_PER_HEAD + head_dim_vec_idx); if (cache_type == KvCacheDataType::FP8) { quantCopy(reinterpret_cast<__nv_fp8_e4m3*>(kDst) + inBlockIdx * ELTS_PER_VEC, reinterpret_cast(&k), quant_scale_kv_val); } else reinterpret_cast(kDst)[inBlockIdx] = k; } auto const dst_q_idx = static_cast(global_token_idx) * head_num * (nope_head_size_q + ROPE_DIM) + head_idx * (nope_head_size_q + ROPE_DIM) + nope_head_size_q + head_dim_idx; auto const dst_k_idx = static_cast(global_token_idx) * head_num * (head_size + ROPE_DIM) + head_idx * (head_size + ROPE_DIM) + head_size + head_dim_idx; reinterpret_cast(q_ptr)[dst_q_idx / ELTS_PER_VEC] = q; // Only write to k_pe to k_buf in the non-absorption mode. if (!absorption_mode) { reinterpret_cast(k_ptr)[dst_k_idx / ELTS_PER_VEC] = k; } } } } else { int block_dim = gridDim.z - head_num; int block_id = head_idx - head_num; size_t const head_dim_vec_idx = (threadIdx.x % K_VECS_PER_HEAD); size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC; size_t const seq_len_loop_end = size_t((max_input_seq_len + K_TOKENS_PER_BLOCK - 1) / K_TOKENS_PER_BLOCK) * K_TOKENS_PER_BLOCK; float quant_scale_kv_val = quant_scale_kv ? quant_scale_kv[0] : 1.f; // Mainloop. for (int local_token_idx = (threadIdx.x / K_VECS_PER_HEAD) + gridDim.x * K_TOKENS_PER_BLOCK * block_id + blockIdx.x * K_TOKENS_PER_BLOCK; local_token_idx < seq_len_loop_end; local_token_idx += block_dim * K_TOKENS_PER_BLOCK * gridDim.x) { int const global_token_offset = cu_q_seqlens[batch_idx]; int const cache_seq_len = kv_cache_lengths[batch_idx]; // Derive cached offset and current input length (same as first loop) int const current_seq_len = cu_q_seqlens[batch_idx + 1] - global_token_offset; int const cached_offset = cache_seq_len - current_seq_len; int token_idx_in_kv_cache = local_token_idx + cached_offset; // Check against BOTH total cache length (valid slot) AND input length (valid read) bool const valid_token = (token_idx_in_kv_cache < cache_seq_len) && (local_token_idx < current_seq_len); // Limit the token_idx to cache seq length (we need all threads in this block to be involved). token_idx_in_kv_cache = std::min(token_idx_in_kv_cache, cache_seq_len - 1); int const safe_local_token_idx = std::min(local_token_idx, current_seq_len - 1); int const global_token_idx = safe_local_token_idx + global_token_offset; if (valid_token) { auto const src_k_global_offset = static_cast(global_token_idx) * (c_k + ROPE_DIM); auto kDst = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache)); auto inBlockIdx = kv_cache.getKVLocalIdx(token_idx_in_kv_cache, 0, TOTAL_VECS_PER_HEAD, head_dim_vec_idx); if (cache_type == KvCacheDataType::FP8) { quantCopy(reinterpret_cast<__nv_fp8_e4m3*>(kDst) + inBlockIdx * ELTS_PER_VEC, fuse_buf + src_k_global_offset + head_dim_idx, quant_scale_kv_val); } else reinterpret_cast(kDst)[inBlockIdx] = *reinterpret_cast(&fuse_buf[src_k_global_offset + head_dim_idx]); } } } } template __global__ void applyMLARopeAndAssignQKVKernelGeneration(T* qkv_output, T* q_pe, T const* fuse_buf, void* quant_q, KVCacheBuffer kv_cache, float2 const* cos_sin_cache, size_t head_num, int c_k, int total_s_len, int seq_len, int* seqQOffset, uint32_t* fmha_tile_counter, int32_t const* kv_cache_lengths, int* seqKVOffsets, int q_pe_ld, int q_pe_stride, KvCacheDataType cache_type, float* bmm1_scale, float* bmm2_scale, float const* quant_scale_o, float const* quant_scale_q, float const* quant_scale_kv, float const* dequant_scale_q, float const* dequant_scale_kv, float host_bmm1_scale, int32_t const* helix_position_offsets, bool const* helix_is_inactive_rank) { // Constants. using VecT = typename VecType::Type; using GPTJEltT = typename VecType::GPTJEltType; constexpr auto HEAD_SIZE = ROPE_DIM; constexpr auto K_HEAD_SIZE = K_DIM; constexpr auto BYTES_PER_ELT = sizeof(T); constexpr auto BYTES_PER_LOAD = 16; constexpr auto ELTS_PER_VEC = BYTES_PER_LOAD / BYTES_PER_ELT; static_assert((HEAD_SIZE * BYTES_PER_ELT) % BYTES_PER_LOAD == 0, "Head size needs to be multiple of 16 bytes."); constexpr auto VECS_PER_HEAD = HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD; constexpr auto K_VECS_PER_HEAD = K_HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD; static_assert(BLOCK_SIZE % VECS_PER_HEAD == 0, "Kernel block should be able to handle entire heads."); constexpr auto TOKENS_PER_BLOCK = BLOCK_SIZE / VECS_PER_HEAD; constexpr auto K_TOKENS_PER_BLOCK = BLOCK_SIZE / K_VECS_PER_HEAD; constexpr auto TOTAL_VEC_PER_HEAD = VECS_PER_HEAD + K_VECS_PER_HEAD; // Block/Head idx. size_t const head_idx = blockIdx.y; #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) asm volatile("griddepcontrol.wait;"); #endif if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) { fmha_tile_counter[0] = 0; seqQOffset[0] = 0; // Calculate bmm scale for FP8 MLA if (cache_type == KvCacheDataType::FP8) { float dequant_scale_q_val = dequant_scale_q ? dequant_scale_q[0] : 1.f; float dequant_scale_kv_val = dequant_scale_kv ? dequant_scale_kv[0] : 1.f; float quant_scale_o_val = quant_scale_o ? quant_scale_o[0] : 1.f; if (bmm1_scale) { // The scale prepared for log2 optimization. constexpr float kLog2e = 1.4426950408889634074f; // The scale after fmha bmm1. float bmm1_scale_val = dequant_scale_q_val * dequant_scale_kv_val * host_bmm1_scale; bmm1_scale[0] = bmm1_scale_val; bmm1_scale[1] = bmm1_scale_val * kLog2e; } if (bmm2_scale) { // The scale after fmha bmm2. bmm2_scale[0] = quant_scale_o_val * dequant_scale_kv_val; } } } if (head_idx <= head_num) { size_t const head_dim_vec_idx = (threadIdx.x % VECS_PER_HEAD); size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC; int const seq_len_loop_end = size_t((total_s_len + TOKENS_PER_BLOCK - 1) / TOKENS_PER_BLOCK) * TOKENS_PER_BLOCK; float const quant_scale_q_val = quant_scale_q ? quant_scale_q[0] : 1.0f; float const quant_scale_kv_val = quant_scale_kv ? quant_scale_kv[0] : 1.0f; // Mainloop. for (int global_token_idx = (threadIdx.x / VECS_PER_HEAD) + blockIdx.x * TOKENS_PER_BLOCK; global_token_idx < seq_len_loop_end; global_token_idx += TOKENS_PER_BLOCK * gridDim.x) { auto batch_idx = global_token_idx / seq_len; auto local_token_idx = global_token_idx % seq_len; bool const valid_token = global_token_idx < total_s_len; VecT data; if (valid_token) { auto const position_id = (helix_position_offsets != nullptr ? helix_position_offsets[global_token_idx] : kv_cache_lengths[batch_idx] - seq_len + local_token_idx); float2 const* rotary_coef_cache_buffer = cos_sin_cache + static_cast(ROPE_DIM) * position_id + (head_dim_idx / 2); if (head_idx == head_num) { auto const src_k_global_offset = static_cast(global_token_idx) * (c_k + ROPE_DIM) + c_k; data = *reinterpret_cast(&fuse_buf[src_k_global_offset + head_dim_idx]); } else { auto const src_q_global_offset = static_cast(global_token_idx) * q_pe_stride + q_pe_ld * head_idx; data = *reinterpret_cast(&q_pe[src_q_global_offset + head_dim_idx]); } // Pack two elements into one for gptj rotary embedding. #pragma unroll for (int elt_id = 0; elt_id < ELTS_PER_VEC / 2; elt_id++) { GPTJEltT& data_ = reinterpret_cast(&data)[elt_id]; float2 rotary_coef_cache = rotary_coef_cache_buffer[elt_id]; data_ = mmha::rotary_embedding_transform(data_, rotary_coef_cache); } } __syncwarp(); if (valid_token) { if (head_idx == head_num) { // If helix parallelism is being used, only write to KV cache if current rank is active. if (helix_is_inactive_rank == nullptr || !helix_is_inactive_rank[batch_idx]) { auto const token_kv_idx = kv_cache_lengths[batch_idx] - seq_len + local_token_idx; { auto kDst = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_kv_idx)); auto inBlockIdx = kv_cache.getKVLocalIdx( token_kv_idx, 0, TOTAL_VEC_PER_HEAD, K_VECS_PER_HEAD + head_dim_vec_idx); if (cache_type == KvCacheDataType::FP8) { quantCopy( reinterpret_cast<__nv_fp8_e4m3*>(kDst) + inBlockIdx * ELTS_PER_VEC, reinterpret_cast(&data), quant_scale_kv_val); } else reinterpret_cast(kDst)[inBlockIdx] = data; } } } else { auto const dst_q_idx = static_cast(global_token_idx) * head_num * (c_k + ROPE_DIM) + head_idx * (c_k + ROPE_DIM) + c_k + head_dim_idx; if (cache_type == KvCacheDataType::FP8) { quantCopy(reinterpret_cast<__nv_fp8_e4m3*>(quant_q) + dst_q_idx, reinterpret_cast(&data), quant_scale_q_val); } else reinterpret_cast(qkv_output)[dst_q_idx / ELTS_PER_VEC] = data; } } } } else if (head_idx <= head_num + 8) { int block_dim = gridDim.y - head_num - 1; int block_id = head_idx - head_num - 1; size_t const head_dim_vec_idx = (threadIdx.x % K_VECS_PER_HEAD); size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC; size_t const seq_len_loop_end = size_t((total_s_len + K_TOKENS_PER_BLOCK - 1) / K_TOKENS_PER_BLOCK) * K_TOKENS_PER_BLOCK; float quant_scale_kv_val = quant_scale_kv ? quant_scale_kv[0] : 1.0f; // Mainloop. for (int global_token_idx = (threadIdx.x / K_VECS_PER_HEAD) + gridDim.x * K_TOKENS_PER_BLOCK * block_id + blockIdx.x * K_TOKENS_PER_BLOCK; global_token_idx < seq_len_loop_end; global_token_idx += block_dim * K_TOKENS_PER_BLOCK * gridDim.x) { auto batch_idx = global_token_idx / seq_len; auto local_token_idx = global_token_idx % seq_len; bool valid_token = global_token_idx < total_s_len; if (valid_token) { if (head_dim_vec_idx == 0) { seqQOffset[batch_idx + 1] = head_num * seq_len * (batch_idx + 1); } // If helix parallelism is being used, only write to KV cache if current rank is active. if (helix_is_inactive_rank == nullptr || !helix_is_inactive_rank[batch_idx]) { auto const token_kv_idx = kv_cache_lengths[batch_idx] - seq_len + local_token_idx; auto const src_kv_global_offset = static_cast(global_token_idx) * (c_k + ROPE_DIM); { auto kDst = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_kv_idx)); auto inBlockIdx = kv_cache.getKVLocalIdx(token_kv_idx, 0, TOTAL_VEC_PER_HEAD, head_dim_vec_idx); if (cache_type == KvCacheDataType::FP8) { quantCopy( reinterpret_cast<__nv_fp8_e4m3*>(kDst) + inBlockIdx * ELTS_PER_VEC, fuse_buf + src_kv_global_offset + head_dim_idx, quant_scale_kv_val); } else reinterpret_cast(kDst)[inBlockIdx] = *reinterpret_cast(&fuse_buf[src_kv_global_offset + head_dim_idx]); } } } } } else { if (cache_type == KvCacheDataType::FP8) { int block_dim = gridDim.y - head_num - 1 - 8; int block_id = head_idx - head_num - 1 - 8; size_t const head_dim_vec_idx = (threadIdx.x % K_VECS_PER_HEAD); size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC; size_t const head_num_idx = (block_id % head_num) * (K_HEAD_SIZE + HEAD_SIZE); size_t const seq_len_loop_end = size_t((total_s_len + K_TOKENS_PER_BLOCK - 1) / K_TOKENS_PER_BLOCK) * K_TOKENS_PER_BLOCK; float quant_scale_q_val = quant_scale_q ? quant_scale_q[0] : 1.0f; // Mainloop. for (int global_token_idx = (threadIdx.x / K_VECS_PER_HEAD) + (block_id / head_num) * gridDim.x * K_TOKENS_PER_BLOCK + blockIdx.x * K_TOKENS_PER_BLOCK; global_token_idx < seq_len_loop_end; global_token_idx += (block_dim / head_num) * gridDim.x * K_TOKENS_PER_BLOCK) { if (global_token_idx < total_s_len) { size_t const load_idx = global_token_idx * head_num * (K_HEAD_SIZE + HEAD_SIZE) + head_num_idx + head_dim_idx; quantCopy( reinterpret_cast<__nv_fp8_e4m3*>(quant_q) + load_idx, qkv_output + load_idx, quant_scale_q_val); } } } } #if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 900)) asm volatile("griddepcontrol.launch_dependents;"); #endif // The implementation of the parallel scan in the thread block (see CUB for details). using BlockScan = cub::BlockScan; // Allocate storage in shared memory to do the scan. __shared__ typename BlockScan::TempStorage tempKVStorage; BlockPrefixCallbackOp prefixKVOp(0); if (blockIdx.x == 0 && blockIdx.y == 0) { int const batchSizeBound = total_s_len / seq_len; for (int batchOffset = 0; batchOffset <= batchSizeBound; batchOffset += BLOCK_SIZE) { // The index of the batch. int batchIdx = batchOffset + threadIdx.x; int seqKVLength = 0; if (batchIdx < batchSizeBound) { seqKVLength = kv_cache_lengths[batchIdx]; } int seqKVOffset; BlockScan(tempKVStorage).ExclusiveSum(seqKVLength, seqKVOffset, prefixKVOp); if (batchIdx <= batchSizeBound) { seqKVOffsets[batchIdx] = seqKVOffset; } } } } template __global__ void loadPagedKVCacheForMLAKernel(T* compressed_kv_ptr, T* k_pe_ptr, tensorrt_llm::kernels::KVBlockArray const kv_cache, int64_t const* cu_ctx_cached_kv_lens, int max_input_seq_len, float const* kv_scale_quant_orig_ptr) { static_assert(std::is_same_v || std::is_same_v, "TCache must be either the same type as T or __nv_fp8_e4m3"); using KT = typename tensorrt_llm::kernels::loadPagedKVKernelTraits; int const batch_idx = static_cast(blockIdx.y); float const kv_scale_quant_orig = kv_scale_quant_orig_ptr ? kv_scale_quant_orig_ptr[0] : 1.0f; size_t const head_dim_vec_idx = (threadIdx.x % KT::kVecPerHead); size_t const head_dim_idx = head_dim_vec_idx * KT::kElemPerLoad; bool const is_valid_kv = head_dim_vec_idx < KT::kKVThreadPerHead; size_t const seq_len_loop_end = (max_input_seq_len + KT::kTokenPerBlock - 1) / KT::kTokenPerBlock * KT::kTokenPerBlock; int64_t const global_token_offset = cu_ctx_cached_kv_lens[batch_idx]; int64_t const cache_kv_len = cu_ctx_cached_kv_lens[batch_idx + 1] - cu_ctx_cached_kv_lens[batch_idx]; for (int local_token_idx = (threadIdx.x / KT::kThreadPerHead) + blockIdx.x * KT::kTokenPerBlock; local_token_idx < seq_len_loop_end; local_token_idx += KT::kTokenPerBlock * gridDim.x) { int token_idx_in_kv_cache = local_token_idx; bool const valid_token = token_idx_in_kv_cache < cache_kv_len; if (valid_token) { auto* kvSrc = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache)); // head_idx === 0 auto kvBlockIdx = kv_cache.getKVLocalIdx(token_idx_in_kv_cache, 0, KT::kVecPerHead, static_cast(head_dim_vec_idx)); auto src_data = reinterpret_cast(kvSrc)[kvBlockIdx]; int const global_token_idx = local_token_idx + global_token_offset; if (is_valid_kv) { // compressed_kv {total_token, lora_size} int const dstIdx = global_token_idx * KT::kLoraSize + head_dim_idx; // copy back to compressed_kv if constexpr (std::is_same_v) { *reinterpret_cast(compressed_kv_ptr + dstIdx) = src_data; } else if constexpr (std::is_same_v) { dequantCopy(compressed_kv_ptr + dstIdx, reinterpret_cast<__nv_fp8_e4m3 const*>(&src_data), kv_scale_quant_orig); } } else { // k_pe {total_token, rope_size} int const dstIdx = global_token_idx * KT::kRopeSize + (head_dim_idx - KT::kLoraSize); // copy back to k_pe if constexpr (std::is_same_v) { *reinterpret_cast(k_pe_ptr + dstIdx) = src_data; } else if constexpr (std::is_same_v) { dequantCopy( k_pe_ptr + dstIdx, reinterpret_cast<__nv_fp8_e4m3 const*>(&src_data), kv_scale_quant_orig); } } } } } // q {total_uncached_tokens, h, d_nope + d_rope} // latent_cache {total_uncached_tokens, d_k + d_rope} template __global__ void applyMLARopeAppendPagedKVAssignQKernel(KVBlockArray kv_cache, T* q_ptr, T* latent_cache_ptr, int64_t const* cu_ctx_cached_kv_lens, int64_t const* cu_seq_lens, int const max_input_uncached_seq_len, float2 const* cos_sin_cache, size_t head_num, int nope_size, float const* kv_scale_orig_quant_ptr) { static_assert(std::is_same_v || std::is_same_v, "TCache must be either the same type as T or __nv_fp8_e4m3"); // Constants. using VecT = typename VecType::Type; using GPTJEltT = typename VecType::GPTJEltType; constexpr auto HEAD_SIZE = ROPE_DIM; constexpr auto K_HEAD_SIZE = K_DIM; constexpr auto BYTES_PER_ELT = sizeof(T); constexpr auto BYTES_PER_LOAD = 16; constexpr auto ELTS_PER_VEC = BYTES_PER_LOAD / BYTES_PER_ELT; static_assert((HEAD_SIZE * BYTES_PER_ELT) % BYTES_PER_LOAD == 0, "Head size needs to be multiple of 16 bytes."); constexpr auto VECS_PER_HEAD = HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD; constexpr auto K_VECS_PER_HEAD = K_HEAD_SIZE * BYTES_PER_ELT / BYTES_PER_LOAD; static_assert(BLOCK_SIZE % VECS_PER_HEAD == 0, "Kernel block should be able to handle entire heads."); constexpr auto TOKENS_PER_BLOCK = BLOCK_SIZE / VECS_PER_HEAD; constexpr auto K_TOKENS_PER_BLOCK = BLOCK_SIZE / K_VECS_PER_HEAD; constexpr auto TOTAL_VECS_PER_HEAD = VECS_PER_HEAD + K_VECS_PER_HEAD; // Block/Head idx. size_t const batch_idx = blockIdx.y; size_t const head_idx = blockIdx.z; int64_t const global_token_offset = cu_seq_lens[batch_idx] - cu_ctx_cached_kv_lens[batch_idx]; int64_t const cached_kv_len = cu_ctx_cached_kv_lens[batch_idx + 1] - cu_ctx_cached_kv_lens[batch_idx]; int64_t const uncached_kv_len = cu_seq_lens[batch_idx + 1] - cu_seq_lens[batch_idx] - cached_kv_len; if (head_idx <= head_num) { size_t const head_dim_vec_idx = (threadIdx.x % VECS_PER_HEAD); size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC; size_t const seq_len_loop_end = size_t((max_input_uncached_seq_len + TOKENS_PER_BLOCK - 1) / TOKENS_PER_BLOCK) * TOKENS_PER_BLOCK; float quant_scale_kv_val = kv_scale_orig_quant_ptr ? kv_scale_orig_quant_ptr[0] : 1.f; // Mainloop. for (int local_token_idx = (threadIdx.x / VECS_PER_HEAD) + blockIdx.x * TOKENS_PER_BLOCK; local_token_idx < seq_len_loop_end; local_token_idx += TOKENS_PER_BLOCK * gridDim.x) { int token_idx_in_kv_cache = local_token_idx + cached_kv_len; bool valid_token = local_token_idx < uncached_kv_len; int const global_token_idx = local_token_idx + global_token_offset; VecT data; if (valid_token) { auto const position_id = token_idx_in_kv_cache; float2 const* rotary_coef_cache_buffer = cos_sin_cache + static_cast(ROPE_DIM) * position_id + (head_dim_idx / 2); if (head_idx == head_num) { auto const src_k_global_offset = static_cast(global_token_idx) * (K_DIM + ROPE_DIM) + K_DIM; data = *reinterpret_cast(&latent_cache_ptr[src_k_global_offset + head_dim_idx]); } else { auto const src_q_global_offset = static_cast(global_token_idx) * head_num * (nope_size + ROPE_DIM) + (nope_size + ROPE_DIM) * head_idx + nope_size; data = *reinterpret_cast(&q_ptr[src_q_global_offset + head_dim_idx]); } // Pack two elements into one for gptj rotary embedding. #pragma unroll for (int elt_id = 0; elt_id < ELTS_PER_VEC / 2; elt_id++) { GPTJEltT& data_ = reinterpret_cast(&data)[elt_id]; float2 rotary_coef_cache = rotary_coef_cache_buffer[elt_id]; data_ = mmha::rotary_embedding_transform(data_, rotary_coef_cache); } } // do sync __syncwarp(); if (valid_token) { if (head_idx == head_num) { auto kDst = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache)); auto inBlockIdx = kv_cache.getKVLocalIdx( token_idx_in_kv_cache, 0, TOTAL_VECS_PER_HEAD, K_VECS_PER_HEAD + head_dim_vec_idx); if constexpr (std::is_same_v) { reinterpret_cast(kDst)[inBlockIdx] = data; } else if constexpr (std::is_same_v) { quantCopy(reinterpret_cast<__nv_fp8_e4m3*>(kDst) + inBlockIdx * ELTS_PER_VEC, reinterpret_cast(&data), quant_scale_kv_val); } // copy to latent_cache (for chunked prefill, it will not load kv cache for uncached k_pe) // we only need to copy original value. auto const src_k_global_offset = static_cast(global_token_idx) * (K_DIM + ROPE_DIM) + K_DIM; *reinterpret_cast(&latent_cache_ptr[src_k_global_offset + head_dim_idx]) = data; } else { auto const dst_q_idx = static_cast(global_token_idx) * head_num * (nope_size + ROPE_DIM) + head_idx * (nope_size + ROPE_DIM) + nope_size + head_dim_idx; reinterpret_cast(q_ptr)[dst_q_idx / ELTS_PER_VEC] = data; } } } } else { int block_dim = gridDim.z - head_num - 1; int block_id = head_idx - head_num - 1; size_t const head_dim_vec_idx = (threadIdx.x % K_VECS_PER_HEAD); size_t const head_dim_idx = head_dim_vec_idx * ELTS_PER_VEC; size_t const seq_len_loop_end = size_t((max_input_uncached_seq_len + K_TOKENS_PER_BLOCK - 1) / K_TOKENS_PER_BLOCK) * K_TOKENS_PER_BLOCK; float quant_scale_kv_val = kv_scale_orig_quant_ptr ? kv_scale_orig_quant_ptr[0] : 1.f; // Mainloop. for (int local_token_idx = (threadIdx.x / K_VECS_PER_HEAD) + gridDim.x * K_TOKENS_PER_BLOCK * block_id + blockIdx.x * K_TOKENS_PER_BLOCK; local_token_idx < seq_len_loop_end; local_token_idx += block_dim * K_TOKENS_PER_BLOCK * gridDim.x) { int token_idx_in_kv_cache = local_token_idx + cached_kv_len; bool valid_token = local_token_idx < uncached_kv_len; int const global_token_idx = local_token_idx + global_token_offset; if (valid_token) { auto const src_k_global_offset = static_cast(global_token_idx) * (K_DIM + ROPE_DIM); auto kDst = reinterpret_cast(kv_cache.getKBlockPtr(batch_idx, token_idx_in_kv_cache)); auto inBlockIdx = kv_cache.getKVLocalIdx(token_idx_in_kv_cache, 0, TOTAL_VECS_PER_HEAD, head_dim_vec_idx); if constexpr (std::is_same_v) { reinterpret_cast(kDst)[inBlockIdx] = *reinterpret_cast(&latent_cache_ptr[src_k_global_offset + head_dim_idx]); } else if constexpr (std::is_same_v) { quantCopy(reinterpret_cast<__nv_fp8_e4m3*>(kDst) + inBlockIdx * ELTS_PER_VEC, latent_cache_ptr + src_k_global_offset + head_dim_idx, quant_scale_kv_val); } } } } } template __global__ void quantizeCopyInputToFp8Kernel(T const* q_buf, __nv_fp8_e4m3* quant_q_buf, T const* k_buf, __nv_fp8_e4m3* quant_k_buf, T const* v_buf, __nv_fp8_e4m3* quant_v_buf, int total_q_len, int total_kv_len, float const* quant_scale_qkv_ptr, float* bmm1_scale, float* bmm2_scale, float const* quant_scale_o, float const* dequant_scale_q, float const* dequant_scale_kv, float host_bmm1_scale) { // Constants. using VecT = typename VecType::Type; constexpr auto BYTES_PER_ELT = sizeof(T); constexpr auto BYTES_PER_LOAD = 16; constexpr auto ELTS_PER_VEC = BYTES_PER_LOAD / BYTES_PER_ELT; constexpr auto QK_HEAD_DIM = QK_NOPE_HEAD_DIM + QK_ROPE_HEAD_DIM; static_assert( (QK_HEAD_DIM * BYTES_PER_ELT) % BYTES_PER_LOAD == 0, "QK head size needs to be multiple of 16 bytes."); static_assert((V_HEAD_DIM * BYTES_PER_ELT) % BYTES_PER_LOAD == 0, "V head size needs to be multiple of 16 bytes."); constexpr auto QK_VECS_PER_HEAD = QK_HEAD_DIM * BYTES_PER_ELT / BYTES_PER_LOAD; constexpr auto V_VECS_PER_HEAD = V_HEAD_DIM * BYTES_PER_ELT / BYTES_PER_LOAD; static_assert(BLOCK_SIZE % QK_VECS_PER_HEAD == 0, "Kernel block should be able to handle entire heads."); static_assert(ABSORPTION_MODE || (BLOCK_SIZE % V_VECS_PER_HEAD) == 0, "Kernel block should be able to handle entire heads in non-absorption mode."); constexpr auto QK_TOKENS_PER_BLOCK = BLOCK_SIZE / QK_VECS_PER_HEAD; constexpr auto V_TOKENS_PER_BLOCK = BLOCK_SIZE / V_VECS_PER_HEAD; size_t const head_idx = blockIdx.z; size_t const head_num = gridDim.z; if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && threadIdx.x == 0) { // Calculate bmm scale for FP8 MLA float dequant_scale_q_val = dequant_scale_q ? dequant_scale_q[0] : 1.f; float dequant_scale_kv_val = dequant_scale_kv ? dequant_scale_kv[0] : 1.f; float quant_scale_o_val = quant_scale_o ? quant_scale_o[0] : 1.f; if (bmm1_scale) { // The scale prepared for log2 optimization. constexpr float kLog2e = 1.4426950408889634074f; // The scale after fmha bmm1. float bmm1_scale_val = dequant_scale_q_val * dequant_scale_kv_val * host_bmm1_scale; bmm1_scale[0] = bmm1_scale_val; bmm1_scale[1] = bmm1_scale_val * kLog2e; } if (bmm2_scale) { // The scale after fmha bmm2. bmm2_scale[0] = quant_scale_o_val * dequant_scale_kv_val; } } size_t const qk_head_dim_vec_idx = (threadIdx.x % QK_VECS_PER_HEAD); size_t const v_head_dim_vec_idx = (threadIdx.x % V_VECS_PER_HEAD); size_t const qk_head_dim_idx = qk_head_dim_vec_idx * ELTS_PER_VEC; size_t const v_head_dim_idx = v_head_dim_vec_idx * ELTS_PER_VEC; size_t const q_len_loop_end = size_t((total_q_len + QK_TOKENS_PER_BLOCK - 1) / QK_TOKENS_PER_BLOCK) * QK_TOKENS_PER_BLOCK; size_t const k_len_loop_end = size_t((total_kv_len + QK_TOKENS_PER_BLOCK - 1) / QK_TOKENS_PER_BLOCK) * QK_TOKENS_PER_BLOCK; size_t const v_len_loop_end = size_t((total_kv_len + V_TOKENS_PER_BLOCK - 1) / V_TOKENS_PER_BLOCK) * V_TOKENS_PER_BLOCK; float quant_scale_qkv_val = quant_scale_qkv_ptr ? quant_scale_qkv_ptr[0] : 1.f; // Quantize Q, both src and dst are contiguous for (int q_token_idx = (threadIdx.x / QK_VECS_PER_HEAD) + blockIdx.x * QK_TOKENS_PER_BLOCK; q_token_idx < q_len_loop_end; q_token_idx += QK_TOKENS_PER_BLOCK * gridDim.x) { if (q_token_idx < total_q_len) { auto const src_q_idx = static_cast(q_token_idx) * QK_HEAD_DIM * head_num + head_idx * QK_HEAD_DIM + qk_head_dim_idx; auto const dst_q_idx = src_q_idx; quantCopy(quant_q_buf + dst_q_idx, &q_buf[src_q_idx], quant_scale_qkv_val); } } // Only quantize K and V in non-absorption mode. if constexpr (!ABSORPTION_MODE) { // Quantize K, both src and dst are contiguous for (int k_token_idx = (threadIdx.x / QK_VECS_PER_HEAD) + blockIdx.x * QK_TOKENS_PER_BLOCK; k_token_idx < k_len_loop_end; k_token_idx += QK_TOKENS_PER_BLOCK * gridDim.x) { if (k_token_idx < total_kv_len) { auto const src_k_idx = static_cast(k_token_idx) * QK_HEAD_DIM * head_num + head_idx * QK_HEAD_DIM + qk_head_dim_idx; auto const dst_k_idx = src_k_idx; quantCopy(quant_k_buf + dst_k_idx, &k_buf[src_k_idx], quant_scale_qkv_val); } } // Quantize V, dst V is contiguous, but src V is not contiguous, so we need to calculate the stride size_t const src_v_token_stride = (QK_NOPE_HEAD_DIM + V_HEAD_DIM) * head_num; for (int v_token_idx = (threadIdx.x / V_VECS_PER_HEAD) + blockIdx.x * V_TOKENS_PER_BLOCK; v_token_idx < v_len_loop_end; v_token_idx += V_TOKENS_PER_BLOCK * gridDim.x) { if (v_token_idx < total_kv_len) { auto const src_v_idx = static_cast(v_token_idx) * src_v_token_stride + head_idx * V_HEAD_DIM + v_head_dim_idx; auto const dst_v_idx = static_cast(v_token_idx) * V_HEAD_DIM * head_num + head_idx * V_HEAD_DIM + v_head_dim_idx; quantCopy(quant_v_buf + dst_v_idx, &v_buf[src_v_idx], quant_scale_qkv_val); } } } } template void invokeMLARopeContext(MlaParams& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream) { dim3 grid(int(tensorrt_llm::common::divUp(params.max_input_seq_len, 32)), params.batch_size, params.head_num + 8); auto head_size = params.meta.qk_nope_head_dim; applyMLARopeAndAssignQKVKernelOptContext<<>>(params.q_buf, params.q_pe, params.k_buf, params.latent_cache, kv_cache_buffer, params.q_pe_ld, params.q_pe_stride, params.cos_sin_cache, params.head_num, head_size, params.meta.kv_lora_rank, params.cu_q_seqlens, params.cache_seq_lens, params.max_input_seq_len, params.cache_type, params.quant_scale_kv, params.helix_position_offsets, params.absorption_mode); } template void invokeMLAContextFp8Quantize(MlaParams& params, int total_kv_len, cudaStream_t stream) { TLLM_CHECK_WITH_INFO(params.cache_type == KvCacheDataType::FP8, "MLA Context: cache_type must be FP8"); TLLM_CHECK_WITH_INFO(params.q_buf != nullptr, "MLA Context: q_buf must be non-null"); TLLM_CHECK_WITH_INFO(params.absorption_mode || params.k_buf != nullptr, "MLA Context: k_buf must be non-null in non-absorption mode"); TLLM_CHECK_WITH_INFO(params.absorption_mode || params.v_buf != nullptr, "MLA Context: v_buf must be non-null in non-absorption mode"); TLLM_CHECK_WITH_INFO(params.quant_q_buf != nullptr, "MLA Context: quant_q_buf must be non-null"); TLLM_CHECK_WITH_INFO(params.absorption_mode || params.quant_k_buf != nullptr, "MLA Context: quant_k_buf must be non-null in non-absorption mode"); TLLM_CHECK_WITH_INFO(params.absorption_mode || params.quant_v_buf != nullptr, "MLA Context: quant_v_buf must be non-null in non-absorption mode"); TLLM_LOG_DEBUG("MLA RoPE Context: Quantizing separate qkv to FP8"); if (params.acc_q_len > 0) { // The Q tensor has layout of [num_tokens, head_num, 576] in the absorption mode. // Convert Q to FP8 in absorption mode. if (params.absorption_mode) { constexpr int threads_per_block = 288; constexpr int num_tokens_per_block = threads_per_block * 16 / 576 * sizeof(T); dim3 grid(int(tensorrt_llm::common::divUp(total_kv_len, num_tokens_per_block)), 1, params.head_num); TLLM_LOG_DEBUG( "Launching quantizeCopyInputToFp8Kernel with grid_size: (%d, %d, %d), threads_per_block: %d, " "total_kv_len: %d, acc_q_len: %d, absorption_mode: %d", grid.x, grid.y, grid.z, threads_per_block, total_kv_len, params.acc_q_len, params.absorption_mode); quantizeCopyInputToFp8Kernel <<>>(params.q_buf, static_cast<__nv_fp8_e4m3*>(params.quant_q_buf), params.k_buf, static_cast<__nv_fp8_e4m3*>(params.quant_k_buf), params.v_buf, static_cast<__nv_fp8_e4m3*>(params.quant_v_buf), params.acc_q_len, total_kv_len, params.quant_scale_qkv, params.bmm1_scale, params.bmm2_scale, params.quant_scale_o, params.dequant_scale_q, params.dequant_scale_kv, params.host_bmm1_scale); } else { // The Q or K tensor has layout of [num_tokens, head_num, 192] in the non-absorption mode. // The V tensor has layout of [num_tokens, head_num, 128] in the non-absorption mode. // Convert Q, K, V to FP8 in non-absorption mode. constexpr int threads_per_block = 384; constexpr int num_tokens_per_block = threads_per_block * 16 / 192 * sizeof(T); dim3 grid(int(tensorrt_llm::common::divUp(total_kv_len, num_tokens_per_block)), 1, params.head_num); TLLM_LOG_DEBUG( "Launching quantizeCopyInputToFp8Kernel with grid_size: (%d, %d, %d), threads_per_block: %d, " "total_kv_len: %d, acc_q_len: %d, absorption_mode: %d", grid.x, grid.y, grid.z, threads_per_block, total_kv_len, params.acc_q_len, params.absorption_mode); quantizeCopyInputToFp8Kernel <<>>(params.q_buf, static_cast<__nv_fp8_e4m3*>(params.quant_q_buf), params.k_buf, static_cast<__nv_fp8_e4m3*>(params.quant_k_buf), params.v_buf, static_cast<__nv_fp8_e4m3*>(params.quant_v_buf), params.acc_q_len, total_kv_len, params.quant_scale_qkv, params.bmm1_scale, params.bmm2_scale, params.quant_scale_o, params.dequant_scale_q, params.dequant_scale_kv, params.host_bmm1_scale); } } else { TLLM_LOG_WARNING("MLA RoPE Context: acc_q_len is 0, skipping quantization."); } } template void invokeMLARopeGeneration(MlaParams& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream) { dim3 grid(int(tensorrt_llm::common::divUp(params.acc_q_len, 32)), params.head_num + 1 + 8); if (params.cache_type == KvCacheDataType::FP8) grid.y += params.head_num * 8; TLLM_CHECK_WITH_INFO(params.acc_q_len % params.batch_size == 0, "MLA can only support input sequences with the same sequence length."); auto seq_len = params.acc_q_len / params.batch_size; auto* kernel_instance = &applyMLARopeAndAssignQKVKernelGeneration; cudaLaunchConfig_t config; config.gridDim = grid; config.blockDim = 256; config.dynamicSmemBytes = 0; config.stream = stream; cudaLaunchAttribute attrs[1]; attrs[0].id = cudaLaunchAttributeProgrammaticStreamSerialization; attrs[0].val.programmaticStreamSerializationAllowed = tensorrt_llm::common::getEnvEnablePDL(); config.numAttrs = 1; config.attrs = attrs; cudaLaunchKernelEx(&config, kernel_instance, params.q_buf, params.q_pe, params.latent_cache, params.quant_q_buf, kv_cache_buffer, params.cos_sin_cache, params.head_num, params.meta.kv_lora_rank, params.acc_q_len, seq_len, params.seqQOffset, params.fmha_tile_counter, params.cache_seq_lens, params.cu_kv_seqlens, params.q_pe_ld, params.q_pe_stride, params.cache_type, params.bmm1_scale, params.bmm2_scale, params.quant_scale_o, params.quant_scale_q, params.quant_scale_kv, params.dequant_scale_q, params.dequant_scale_kv, params.host_bmm1_scale, params.helix_position_offsets, params.helix_is_inactive_rank); } template void invokeMLALoadPagedKV(T* compressed_kv_ptr, T* k_pe_ptr, KVBlockArray& kv_cache, int const num_contexts, int64_t const* cu_ctx_cached_kv_lens, int const max_input_seq_len, int const lora_size, int const rope_size, float const* kv_scale_quant_orig_ptr, cudaStream_t stream) { using KT = typename tensorrt_llm::kernels::loadPagedKVKernelTraits; // {seq_len / token_per_block, batch_size, head_num} TLLM_CHECK_WITH_INFO(lora_size == KT::kLoraSize, "lora_size should be equal to %d", KT::kLoraSize); TLLM_CHECK_WITH_INFO(rope_size == KT::kRopeSize, "rope_size should be equal to %d", KT::kRopeSize); TLLM_CHECK_WITH_INFO(lora_size + rope_size == KT::kHeadSize, "head dim should be equal to %d", KT::kHeadSize); dim3 grid(static_cast(tensorrt_llm::common::divUp(max_input_seq_len, KT::kTokenPerBlock)), num_contexts, 1); loadPagedKVCacheForMLAKernel<<>>( compressed_kv_ptr, k_pe_ptr, kv_cache, cu_ctx_cached_kv_lens, max_input_seq_len, kv_scale_quant_orig_ptr); } template void invokeMLARopeAppendPagedKVAssignQ(KVBlockArray& kv_cache, T* q_ptr, T* latent_cache_ptr, int const num_requests, int64_t const* cu_ctx_cached_kv_lens, int64_t const* cu_seq_lens, int const max_input_uncached_seq_len, float2 const* cos_sin_cache, size_t head_num, int nope_size, int rope_size, int lora_size, float const* kv_scale_orig_quant_ptr, cudaStream_t stream) { dim3 grid(int(tensorrt_llm::common::divUp(max_input_uncached_seq_len, 32)), num_requests, head_num + 1 + 8); TLLM_CHECK_WITH_INFO(lora_size == 512, "lora_size should be equal to %d", 512); TLLM_CHECK_WITH_INFO(rope_size == 64, "rope_size should be equal to %d", 64); applyMLARopeAppendPagedKVAssignQKernel<<>>(kv_cache, q_ptr, latent_cache_ptr, cu_ctx_cached_kv_lens, cu_seq_lens, max_input_uncached_seq_len, cos_sin_cache, head_num, nope_size, kv_scale_orig_quant_ptr); } #define INSTANTIATE_MLA_ROPE(T, KVCacheBuffer) \ template void invokeMLARopeContext(MlaParams& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream); \ template void invokeMLARopeGeneration(MlaParams& params, KVCacheBuffer kv_cache_buffer, cudaStream_t stream); INSTANTIATE_MLA_ROPE(float, KVBlockArray); INSTANTIATE_MLA_ROPE(half, KVBlockArray); INSTANTIATE_MLA_ROPE(float, KVLinearBuffer); INSTANTIATE_MLA_ROPE(half, KVLinearBuffer); INSTANTIATE_MLA_ROPE(__nv_bfloat16, KVBlockArray); INSTANTIATE_MLA_ROPE(__nv_bfloat16, KVLinearBuffer); #define INSTANTIATE_MLA_QUANTIZE(T) \ template void invokeMLAContextFp8Quantize(MlaParams & params, int total_kv_len, cudaStream_t stream); INSTANTIATE_MLA_QUANTIZE(float); INSTANTIATE_MLA_QUANTIZE(half); INSTANTIATE_MLA_QUANTIZE(__nv_bfloat16); #define INSTANTIATE_RW_KVCACHE_MLA(T, TCache) \ template void invokeMLALoadPagedKV(T * compressed_kv_ptr, T * k_pe_ptr, KVBlockArray & kv_cache, \ int const num_contexts, int64_t const* cu_ctx_cached_kv_lens, int const max_input_seq_len, \ int const lora_size, int const rope_size, float const* kv_scale_quant_orig_ptr, cudaStream_t stream); \ template void invokeMLARopeAppendPagedKVAssignQ(KVBlockArray & kv_cache, T * q_ptr, \ T * latent_cache_ptr, int const num_requests, int64_t const* cu_ctx_cached_kv_lens, \ int64_t const* cu_seq_lens, int const max_input_uncached_seq_len, float2 const* cos_sin_cache, \ size_t head_num, int nope_size, int rope_size, int lora_size, float const* kv_scale_orig_quant_ptr, \ cudaStream_t stream); INSTANTIATE_RW_KVCACHE_MLA(float, float); INSTANTIATE_RW_KVCACHE_MLA(float, __nv_fp8_e4m3); INSTANTIATE_RW_KVCACHE_MLA(half, half); INSTANTIATE_RW_KVCACHE_MLA(half, __nv_fp8_e4m3); INSTANTIATE_RW_KVCACHE_MLA(__nv_bfloat16, __nv_bfloat16); INSTANTIATE_RW_KVCACHE_MLA(__nv_bfloat16, __nv_fp8_e4m3); } // namespace kernels } // namespace tensorrt_llm