/* * Copyright (c) 2022-2024, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "tensorrt_llm/common/workspace.h" #include "tensorrt_llm/kernels/internal_cutlass_kernels/include/fp8_blockscale_gemm.h" #include "tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_gemm_kernels.h" #include "tensorrt_llm/kernels/internal_cutlass_kernels/include/moe_kernels.h" #include "tensorrt_llm/runtime/torchUtils.h" #include "tensorrt_llm/thop/thUtils.h" #include #include #define C10_THROW_ERROR_FORMATTED(ErrorType, ...) \ do \ { \ std::ostringstream oss; \ oss << __VA_ARGS__; \ C10_THROW_ERROR(ErrorType, oss.str()); \ } while (0) namespace torch_ext { namespace common = tensorrt_llm::common; namespace kernels = tensorrt_llm::kernels; using profiler_backend = kernels::GemmProfilerBackend; struct GemmIDMoe { profiler_backend::GemmToProfile gemm_idx; int64_t hidden_size; int64_t inter_size; int num_experts; int experts_per_token; bool operator==(GemmIDMoe const& id) const { return id.gemm_idx == gemm_idx && id.hidden_size == hidden_size && id.inter_size == inter_size && id.num_experts == num_experts && id.experts_per_token == experts_per_token; } friend std::ostream& operator<<(std::ostream& out, GemmIDMoe const& id) { out << "gemm_idx, hidden_size, inter_size, num_experts, experts_per_token=" << static_cast(id.gemm_idx) << "," << id.hidden_size << "," << id.inter_size << "," << id.num_experts << "," << id.experts_per_token; return out; } }; struct GemmIDMoeHash { std::size_t operator()(GemmIDMoe const& id) const { size_t hash = std::hash{}(static_cast(id.gemm_idx)); hash ^= std::hash{}(id.hidden_size); hash ^= std::hash{}(id.inter_size); hash ^= std::hash{}(id.num_experts); hash ^= std::hash{}(id.experts_per_token); return hash; } }; using ProfileId = int; using MProfileMap = std::unordered_map; using MProfileMapPtr = std::shared_ptr; struct MNKProfileMap { std::unordered_map profile_map; bool existsMProfileMap(GemmIDMoe const& id) { auto const iter = profile_map.find(id); return iter != profile_map.end(); } void createMProfileMap(GemmIDMoe const& id) { profile_map[id] = std::make_shared(); } MProfileMapPtr getMProfileMap(GemmIDMoe const& id) { auto const iter = profile_map.find(id); if (iter == profile_map.end()) { C10_THROW_ERROR_FORMATTED(Error, "Cannot find ID (" << id << ") in the profile map. Abort."); } return iter->second; } }; struct RunnerTypeKey { c10::ScalarType activation_dtype; c10::ScalarType weight_dtype; c10::ScalarType output_dtype; bool operator==(RunnerTypeKey const& key) const { return key.activation_dtype == activation_dtype && key.weight_dtype == weight_dtype; } }; struct RunnerTypeKeyHash { std::size_t operator()(RunnerTypeKey const& key) const { size_t hash = std::hash{}(static_cast(key.activation_dtype)); hash ^= std::hash{}(static_cast(key.weight_dtype)); hash ^= std::hash{}(static_cast(key.output_dtype)); return hash; } }; class FusedMoeRunner : public torch::CustomClassHolder { public: static c10::intrusive_ptr getInstance(c10::ScalarType activation_dtype, c10::ScalarType weight_dtype, c10::ScalarType output_dtype, bool use_fp8_block_scaling) { static std::mutex instance_map_mutex; std::lock_guard lock(instance_map_mutex); static std::unordered_map, RunnerTypeKeyHash> instance_map; auto const key = RunnerTypeKey{activation_dtype, weight_dtype, output_dtype}; auto const iter = instance_map.find(key); if (iter == instance_map.end()) { auto instance = c10::make_intrusive( activation_dtype, weight_dtype, output_dtype, use_fp8_block_scaling); instance_map[key] = instance; return instance; } return iter->second; } template std::unique_ptr switch_output_type(c10::ScalarType output_type) { switch (output_type) { case c10::ScalarType::Long: // INT64 == FP4 case c10::ScalarType::Float8_e4m3fn: // TODO We need an atomic FP8 reduction for the finalize fusions C10_THROW_ERROR_FORMATTED(NotImplementedError, "Outputting " << torch::toString(output_type) << " directly is not currently supported"); // return std::make_unique>(); case c10::ScalarType::Half: if constexpr (NeedQuant) { return std::make_unique>(); } else { return std::make_unique>(); } #ifdef ENABLE_BF16 case c10::ScalarType::BFloat16: if constexpr (NeedQuant) { return std::make_unique>(); } else { return std::make_unique>(); } #endif default: C10_THROW_ERROR_FORMATTED(Error, "Invalid output type " << torch::toString(output_type) << " specified for " << torch::toString(mActivationDtype)); } }; FusedMoeRunner(c10::ScalarType activation_dtype, c10::ScalarType weight_dtype, c10::ScalarType output_dtype, bool use_fp8_block_scaling) { mActivationDtype = activation_dtype; mWeightDtype = weight_dtype; mOutputDtype = output_dtype; mUseFp8BlockScaling = use_fp8_block_scaling; mInnerDimMultiplier = 1; // keep consistent with cpp/tensorrt_llm/plugins/mixtureOfExperts/mixtureOfExpertsPlugin.cpp if (mActivationDtype == c10::ScalarType::Half && mWeightDtype == c10::ScalarType::Half) { mKernelRunner = std::make_shared>(); } #ifdef ENABLE_BF16 else if (mActivationDtype == c10::ScalarType::BFloat16 && mWeightDtype == c10::ScalarType::BFloat16) { mKernelRunner = std::make_shared>(); } #ifdef ENABLE_FP8 else if (mActivationDtype == c10::ScalarType::BFloat16 && mWeightDtype == c10::ScalarType::Float8_e4m3fn) { mKernelRunner = std::make_unique>(); } #endif #endif #ifdef ENABLE_FP8 if (isFp8Quant()) { mKernelRunner = switch_output_type<__nv_fp8_e4m3>(mOutputDtype); } #endif #ifdef ENABLE_FP4 if (isNvfp4Quant()) { mInnerDimMultiplier = 16; switch (mActivationDtype) { case c10::ScalarType::Half: #ifdef ENABLE_BF16 case c10::ScalarType::BFloat16: #endif mKernelRunner = switch_output_type<__nv_fp4_e2m1, true>(mOutputDtype); break; default: mKernelRunner = switch_output_type<__nv_fp4_e2m1, false>(mOutputDtype); } } #endif if (!mKernelRunner) { C10_THROW_ERROR_FORMATTED(Error, "Could not construct fused moe op with the requested input combination Activation: " << torch::toString(mActivationDtype) << ", Weight: " << torch::toString(mWeightDtype) << ", Output: " << torch::toString(mOutputDtype)); } mProfiler = std::make_shared(); mMNKProfileMap = std::make_shared(); mAllProfiles = mKernelRunner->getTactics(); mMinDimM = -1; mMaxDimM = -1; } ~FusedMoeRunner() = default; FusedMoeRunner(FusedMoeRunner const&) = delete; void operator=(FusedMoeRunner const&) = delete; void runProfile(torch::Tensor const& fc2_expert_weights, int64_t const top_k, int64_t const tp_size, int64_t const tp_rank, int64_t const ep_size, int64_t const ep_rank, std::vector num_token_buckets) { std::lock_guard lock(mMutex); if (mUseFp8BlockScaling) { return; // TODO } CHECK_INPUT(fc2_expert_weights, mWeightDtype) TORCH_CHECK(fc2_expert_weights.dim() == 3, "fc2_expert_weights must be 3D."); int64_t hidden_size = fc2_expert_weights.sizes()[1]; int64_t inter_size = fc2_expert_weights.sizes()[2] * mInnerDimMultiplier; int num_experts = static_cast(fc2_expert_weights.sizes()[0] * ep_size); std::sort(num_token_buckets.begin(), num_token_buckets.end()); mMinDimM = num_token_buckets.front(); mMaxDimM = num_token_buckets.back(); cudaStream_t stream; common::check_cuda_error(cudaStreamCreate(&stream)); profiler_backend::GemmToProfile gemm_idxes[] = {profiler_backend::GemmToProfile::GEMM_1, profiler_backend::GemmToProfile::GEMM_2}; for (auto const& gemm_idx : gemm_idxes) { runProfileGemmIdx(hidden_size, inter_size, num_experts, static_cast(top_k), static_cast(tp_size), static_cast(tp_rank), static_cast(ep_size), static_cast(ep_rank), num_token_buckets, gemm_idx, stream); } common::check_cuda_error(cudaStreamDestroy(stream)); } c10::optional> getProfileIds(int64_t const num_tokens, torch::Tensor const& fc2_expert_weights, int64_t const top_k, int64_t const num_experts) { std::lock_guard lock(mMutex); CHECK_INPUT(fc2_expert_weights, mWeightDtype) TORCH_CHECK(fc2_expert_weights.dim() == 3, "fc2_expert_weights must be 3D."); int64_t hidden_size = fc2_expert_weights.sizes()[1]; int64_t inter_size = fc2_expert_weights.sizes()[2] * mInnerDimMultiplier; auto gemm_id_moe1 = GemmIDMoe{profiler_backend::GemmToProfile::GEMM_1, hidden_size, inter_size, static_cast(num_experts), static_cast(top_k)}; auto gemm_id_moe2 = GemmIDMoe{profiler_backend::GemmToProfile::GEMM_2, hidden_size, inter_size, static_cast(num_experts), static_cast(top_k)}; if (!mMNKProfileMap->existsMProfileMap(gemm_id_moe1) || !mMNKProfileMap->existsMProfileMap(gemm_id_moe2)) { return c10::nullopt; } int64_t capped_num_tokens = num_tokens; if (num_tokens < mMinDimM) { capped_num_tokens = mMinDimM; } else if (num_tokens > mMaxDimM) { capped_num_tokens = mMaxDimM; } int gemm1_profile_id = mMNKProfileMap->getMProfileMap(gemm_id_moe1)->at(capped_num_tokens); int gemm2_profile_id = mMNKProfileMap->getMProfileMap(gemm_id_moe2)->at(capped_num_tokens); std::vector profile_ids = {gemm1_profile_id, gemm2_profile_id}; return profile_ids; } torch::Tensor runMoe(torch::Tensor const& input, torch::Tensor const& token_selected_experts, torch::optional token_final_scales, torch::Tensor const& fc1_expert_weights, torch::Tensor const& fc2_expert_weights, torch::optional> quant_scales, torch::optional input_sf, int64_t const tp_size, int64_t const tp_rank, int64_t const ep_size, int64_t const ep_rank, torch::optional> profile_ids) { std::lock_guard lock(mMutex); CHECK_INPUT(input, mActivationDtype) CHECK_INPUT(token_selected_experts, at::ScalarType::Int) if (token_final_scales) { CHECK_INPUT(token_final_scales.value(), at::ScalarType::Float) } CHECK_INPUT(fc1_expert_weights, mWeightDtype) CHECK_INPUT(fc2_expert_weights, mWeightDtype) TORCH_CHECK(input.dim() == 2, "input must be 2D."); TORCH_CHECK(token_selected_experts.dim() == 2, "token_selected_experts must be 2D."); TORCH_CHECK(fc1_expert_weights.dim() == 3, "fc1_expert_weights must be 3D."); TORCH_CHECK(fc2_expert_weights.dim() == 3, "fc2_expert_weights must be 3D."); TORCH_CHECK(input.sizes()[0] == token_selected_experts.sizes()[0], "input and token_selected_experts must have the same num tokens."); if (token_final_scales) { TORCH_CHECK(token_final_scales.value().dim() == 2, "token_selected_experts_probs must be 2D."); TORCH_CHECK(input.sizes()[0] == token_final_scales.value().sizes()[0], "input and token_selected_experts_probs must have the same num tokens."); TORCH_CHECK(token_selected_experts.sizes()[1] == token_final_scales.value().sizes()[1], "token_selected_experts and token_final_scales must have the same number of experts per token."); } TORCH_CHECK(fc1_expert_weights.sizes()[0] == fc2_expert_weights.sizes()[0], "fc1_expert_weights and fc2_expert_weights must have the same number of experts."); TORCH_CHECK(fc1_expert_weights.sizes()[1] == fc2_expert_weights.sizes()[2] * mInnerDimMultiplier * 2, "fc1_expert_weights inter size must be 2 times fc2_expert_weights inter size."); int experts_per_token = token_selected_experts.sizes()[1]; int64_t num_rows = input.sizes()[0]; int64_t hidden_size = fc2_expert_weights.sizes()[1]; int64_t inter_size = fc2_expert_weights.sizes()[2] * mInnerDimMultiplier; int const num_experts_on_rank = fc2_expert_weights.sizes()[0]; auto const num_experts_total = static_cast(num_experts_on_rank * ep_size); auto parallelism_config = kernels::MOEParallelismConfig(tp_size, tp_rank, ep_size, ep_rank); auto activation_type = tensorrt_llm::ActivationType::Swiglu; setRunnerProfiles(profile_ids); auto stream = at::cuda::getCurrentCUDAStream(input.get_device()); std::vector output_shape = {num_rows, hidden_size}; auto output = torch::empty(output_shape, input.options().dtype(mOutputDtype)); WorkspaceInfo workspace_info = getWorkspaceInfo(num_rows, hidden_size, inter_size, num_experts_total, static_cast(experts_per_token), activation_type, parallelism_config); auto const quant_params = getQuantParams(num_experts_on_rank, hidden_size, inter_size, quant_scales); // TODO: support lora in the future kernels::LoraParams lora_params{}; mKernelRunner->runMoe(input.const_data_ptr(), input_sf.has_value() ? input_sf.value().const_data_ptr() : nullptr, reinterpret_cast(token_selected_experts.const_data_ptr()), token_final_scales.has_value() ? reinterpret_cast(token_final_scales.value().const_data_ptr()) : nullptr, fc1_expert_weights.const_data_ptr(), nullptr, activation_type, fc2_expert_weights.const_data_ptr(), nullptr, quant_params, num_rows, hidden_size, inter_size, num_experts_total, static_cast(experts_per_token), static_cast(workspace_info.workspace), output.data_ptr(), static_cast(workspace_info.src_to_dest_map), parallelism_config, false, lora_params, mUseFp8BlockScaling, stream); return output; } private: struct WorkspaceInfo { void* workspace{}; void* src_to_dest_map{}; }; std::mutex mMutex; std::shared_ptr mKernelRunner; std::shared_ptr mProfiler; std::shared_ptr mMNKProfileMap; int64_t mMinDimM; int64_t mMaxDimM; c10::ScalarType mActivationDtype; c10::ScalarType mWeightDtype; c10::ScalarType mOutputDtype; // number of elements packed into the inner dimension of a matrix // e.g. 16 nvfp4 elements are packed into a single int64 element int64_t mInnerDimMultiplier; bool mUseFp8BlockScaling = false; using Profile = tensorrt_llm::cutlass_extensions::CutlassGemmConfig; std::vector mAllProfiles; void runProfileGemmIdx(int64_t const hidden_size, int64_t const inter_size, int const num_experts, int const experts_per_token, int const tp_size, int const tp_rank, int const ep_size, int const ep_rank, std::vector const& num_token_buckets, profiler_backend::GemmToProfile const gemm_idx, cudaStream_t stream) { auto gemm_id_moe = GemmIDMoe{gemm_idx, hidden_size, inter_size, num_experts, experts_per_token}; if (mMNKProfileMap->existsMProfileMap(gemm_id_moe)) { return; } mMNKProfileMap->createMProfileMap(gemm_id_moe); mProfiler->mGemmToProfile = gemm_idx; // TODO: support more dtypes and expert parallelism auto parallelism_config = kernels::MOEParallelismConfig(tp_size, tp_rank, ep_size, ep_rank); mProfiler->init(*mKernelRunner.get(), mProfiler->mGemmToProfile, tensorrt_llm::runtime::TorchUtils::dataType(mActivationDtype), tensorrt_llm::runtime::TorchUtils::dataType(mWeightDtype), tensorrt_llm::runtime::TorchUtils::dataType(mOutputDtype), num_experts, experts_per_token, hidden_size, inter_size, /* group_size */ -1, tensorrt_llm::ActivationType::Swiglu, /* bias */ false, /* use_lora */ false, parallelism_config); char* profile_workspace = nullptr; size_t tmp_workspace_size = mProfiler->getWorkspaceSize(mMaxDimM); auto const cu_malloc_status = cudaMalloc(&profile_workspace, tmp_workspace_size); TORCH_CHECK(cu_malloc_status == cudaSuccess, "Can't allocate tmp workspace for MOE GEMM tactics profiling."); for (auto const& m : num_token_buckets) { ProfileId best_profile_id = runProfileM(m, profile_workspace, stream); mMNKProfileMap->getMProfileMap(gemm_id_moe)->insert({m, best_profile_id}); } auto const cu_free = cudaFree(profile_workspace); TORCH_CHECK(cu_free == cudaSuccess, "Can't free tmp workspace for MOE GEMM profiling."); } ProfileId runProfileM(int64_t const m, char* profile_workspace, cudaStream_t stream) { mProfiler->prepare(m, profile_workspace, stream); float best_time = std::numeric_limits::max(); ProfileId best_profile_id{0}; for (int i = 0; i < static_cast(mAllProfiles.size()); ++i) { auto const& profile = mAllProfiles[i]; float candidate_time = std::numeric_limits::max(); try { candidate_time = runSingleProfile(m, profile, profile_workspace, stream); } catch (std::exception const& e) { std::ostringstream msg; msg << "Cannot profile configuration " << i << ": " << profile.toString() << "\n (for" << " m=" << m << ")" << ", reason: \"" << e.what() << "\". Skipped"; cudaGetLastError(); // Reset the last cudaError to cudaSuccess. std::cout << "Error: " << msg.str() << std::endl; continue; } if (candidate_time < best_time) { best_time = candidate_time; best_profile_id = i; } } return best_profile_id; } float runSingleProfile(int64_t const m, Profile const& profile, char* profile_workspace, cudaStream_t stream) { constexpr int warmup = 3; constexpr int runs = 5; // warmup for (int i = 0; i < warmup; ++i) { mProfiler->runProfiler(m, profile, profile_workspace, stream); } cudaEvent_t start; cudaEvent_t stop; common::check_cuda_error(cudaEventCreate(&start)); common::check_cuda_error(cudaEventCreate(&stop)); common::check_cuda_error(cudaStreamSynchronize(stream)); common::check_cuda_error(cudaEventRecord(start, stream)); // profile for (int i = 0; i < runs; ++i) { mProfiler->runProfiler(m, profile, profile_workspace, stream); } common::check_cuda_error(cudaEventRecord(stop, stream)); common::check_cuda_error(cudaEventSynchronize(stop)); float elapsed; common::check_cuda_error(cudaEventElapsedTime(&elapsed, start, stop)); common::check_cuda_error(cudaEventDestroy(start)); common::check_cuda_error(cudaEventDestroy(stop)); return elapsed / runs; } void setRunnerProfiles(torch::optional> profile_ids) { if (mUseFp8BlockScaling) { auto config = tensorrt_llm::cutlass_extensions::CutlassGemmConfig( tensorrt_llm::cutlass_extensions::CutlassTileConfigSM90::CtaShape128x16x128B, tensorrt_llm::cutlass_extensions::MainloopScheduleType::AUTO, tensorrt_llm::cutlass_extensions::EpilogueScheduleType::AUTO, tensorrt_llm::cutlass_extensions::ClusterShape::ClusterShape_1x1x1); mKernelRunner->setTactic(config, config); return; } auto best_gemm1_profile = mAllProfiles.front(); auto best_gemm2_profile = mAllProfiles.front(); if (profile_ids.has_value()) { TORCH_CHECK(profile_ids.value().size() == 2, "Expecting 2 profile ids"); best_gemm1_profile = mAllProfiles.at(profile_ids.value()[0]); best_gemm2_profile = mAllProfiles.at(profile_ids.value()[1]); } mKernelRunner->setTactic(best_gemm1_profile, best_gemm2_profile); } WorkspaceInfo getWorkspaceInfo(int64_t const num_rows, int64_t const hidden_size, int64_t const inter_size, int num_experts, int experts_per_token, tensorrt_llm::ActivationType activation_type, kernels::MOEParallelismConfig const& parallelismConfig) { size_t moe_workspace_size = mKernelRunner->getWorkspaceSize(num_rows, hidden_size, inter_size, num_experts, experts_per_token, activation_type, parallelismConfig, /* use_lora */ false, mUseFp8BlockScaling, /* hasExpertPrequantScales */ false); size_t src_to_dest_map_size = experts_per_token * num_rows * sizeof(int); std::vector workspaces{moe_workspace_size, src_to_dest_map_size}; size_t total_workspace_size = common::calculateTotalWorkspaceSize(workspaces.data(), workspaces.size()); auto workspace = torch::empty({static_cast(total_workspace_size)}, torch::dtype(torch::kInt8).device(torch::kCUDA).requires_grad(false)); WorkspaceInfo info{}; info.workspace = workspace.data_ptr(); info.src_to_dest_map = common::nextWorkspacePtr(static_cast(workspace.data_ptr()), moe_workspace_size); return info; } kernels::QuantParams getQuantParams(int64_t const num_experts_on_rank, int64_t const hidden_size, int64_t const inter_size, torch::optional> const& quant_scales) const { if (isFp8Quant()) { TORCH_CHECK(quant_scales.has_value(), "Expecting quant scales for fp8 quantization"); TORCH_CHECK(quant_scales.value().size() == 4, "Expecting 4 quant scales for fp8 quantization"); auto const fc1_dequant = quant_scales.value()[0]; auto const fc2_quant = quant_scales.value()[1]; auto const fc2_dequant = quant_scales.value()[2]; auto const fc1_input_dequant = quant_scales.value()[3]; CHECK_INPUT(fc1_dequant, c10::ScalarType::Float); CHECK_INPUT(fc2_quant, c10::ScalarType::Float); CHECK_INPUT(fc2_dequant, c10::ScalarType::Float); CHECK_INPUT(fc1_input_dequant, c10::ScalarType::Float); TORCH_CHECK(fc1_dequant.dim() == 1, "fc1 dequant must be 1D"); TORCH_CHECK(fc2_quant.dim() == 0, "fc2 quant must be a scalar tensor"); TORCH_CHECK(fc2_dequant.dim() == 1, "fc2 quant must be 1D"); TORCH_CHECK(fc1_input_dequant.dim() == 0, "fc1 input dequant must be a scalar tensor"); TORCH_CHECK( fc1_dequant.sizes()[0] == num_experts_on_rank, "fc1 dequant size must be (num_experts_on_rank,)"); TORCH_CHECK( fc2_dequant.sizes()[0] == num_experts_on_rank, "fc2 dequant size must be (num_experts_on_rank,)"); return kernels::QuantParams::FP8(static_cast(fc1_dequant.data_ptr()), static_cast(fc2_quant.data_ptr()), static_cast(fc2_dequant.data_ptr()), /* fp8 output quant scale */ nullptr, static_cast(fc1_input_dequant.data_ptr())); } else if (isNvfp4Quant()) { TORCH_CHECK(quant_scales.has_value(), "Expecting quant scales for nvfp4 quantization"); TORCH_CHECK(quant_scales.value().size() == 6, "Expecting 6 quant scales for nvfp4 quantization"); auto const fc1_act_global = quant_scales.value()[0]; auto const fc1_weight_block = quant_scales.value()[1]; auto const fc1_global = quant_scales.value()[2]; auto const fc2_act_global = quant_scales.value()[3]; auto const fc2_weight_block = quant_scales.value()[4]; auto const fc2_global = quant_scales.value()[5]; // The input for scale fc1_weight_block / fc2_weight_block is packed into INT32 constexpr int FP8_PER_INT32 = 4; CHECK_INPUT(fc1_act_global, c10::ScalarType::Float); CHECK_INPUT(fc1_weight_block, c10::ScalarType::Int); CHECK_INPUT(fc1_global, c10::ScalarType::Float); CHECK_INPUT(fc2_act_global, c10::ScalarType::Float); CHECK_INPUT(fc2_weight_block, c10::ScalarType::Int); CHECK_INPUT(fc2_global, c10::ScalarType::Float); TORCH_CHECK(fc1_act_global.dim() == 0, "fc1 act global must be a scalar tensor"); TORCH_CHECK(fc1_weight_block.dim() == 3, "fc1 weight block must be #D"); TORCH_CHECK(fc1_global.dim() == 1, "fc1 global must be 1D"); TORCH_CHECK(fc2_act_global.dim() == 0, "fc2 act global must be a scalar tensor"); TORCH_CHECK(fc2_weight_block.dim() == 3, "fc2 weight block must be 3D"); TORCH_CHECK(fc2_global.dim() == 1, "fc2 global must be 1D"); TORCH_CHECK(fc1_weight_block.sizes()[0] == num_experts_on_rank && fc1_weight_block.sizes()[1] == inter_size * 2 && fc1_weight_block.sizes()[2] * FP8_PER_INT32 * tensorrt_llm::TmaWarpSpecializedGroupedGemmInput::BlockScaleVectorSize == hidden_size, "fc1 weight block size must be (num_experts_on_rank, inter_size * 2, hidden_size // 4 // " "block_scale_vector_size)"); TORCH_CHECK(fc1_global.sizes()[0] == num_experts_on_rank, "fc1 global size must be (num_experts_on_rank,)"); TORCH_CHECK(fc2_weight_block.sizes()[0] == num_experts_on_rank && fc2_weight_block.sizes()[1] == hidden_size && fc2_weight_block.sizes()[2] * FP8_PER_INT32 * tensorrt_llm::TmaWarpSpecializedGroupedGemmInput::BlockScaleVectorSize == inter_size, "fc2 weight block size must be (num_experts_on_rank, hidden_size, inter_size // 4 // " "block_scale_vector_size)"); TORCH_CHECK(fc2_global.sizes()[0] == num_experts_on_rank, "fc2 global size must be (num_experts_on_rank,)"); return kernels::QuantParams::FP4(static_cast(fc1_act_global.data_ptr()), static_cast(fc1_weight_block.data_ptr()), static_cast(fc1_global.data_ptr()), static_cast(fc2_act_global.data_ptr()), static_cast(fc2_weight_block.data_ptr()), static_cast(fc2_global.data_ptr())); } else if (mUseFp8BlockScaling) { auto& fc1_scales = quant_scales.value()[0]; auto& fc2_scales = quant_scales.value()[1]; return kernels::QuantParams::FP8BlockScaling( static_cast(fc1_scales.data_ptr()), static_cast(fc2_scales.data_ptr())); } else { return kernels::QuantParams{}; } } bool isFp8Quant() const { return !mUseFp8BlockScaling && mActivationDtype == c10::ScalarType::Float8_e4m3fn && mWeightDtype == c10::ScalarType::Float8_e4m3fn; } bool isNvfp4Quant() const { return mWeightDtype == c10::ScalarType::Long; } }; torch::Tensor fused_moe(torch::Tensor const& input, torch::Tensor const& token_selected_experts, torch::optional token_final_scales, torch::Tensor const& fc1_expert_weights, torch::Tensor const& fc2_expert_weights, c10::ScalarType const& output_dtype, torch::optional> quant_scales, torch::optional input_sf, int64_t const tp_size, int64_t const tp_rank, int64_t const ep_size, int64_t const ep_rank, torch::optional> profile_ids, bool use_fp8_block_scaling) { return FusedMoeRunner::getInstance( input.scalar_type(), fc1_expert_weights.scalar_type(), output_dtype, use_fp8_block_scaling) ->runMoe(input, token_selected_experts, token_final_scales, fc1_expert_weights, fc2_expert_weights, quant_scales, input_sf, tp_size, tp_rank, ep_size, ep_rank, profile_ids); } } // namespace torch_ext TORCH_LIBRARY(trtllm, m) { m.class_("FusedMoeProfiler") .def_static("get_instance", &torch_ext::FusedMoeRunner::getInstance) .def("run_profile", &torch_ext::FusedMoeRunner::runProfile) .def("get_profile_ids", &torch_ext::FusedMoeRunner::getProfileIds); } TORCH_LIBRARY_FRAGMENT(trtllm, m) { m.def( "fused_moe(Tensor input, Tensor token_selected_experts, " "Tensor? token_final_scales, Tensor fc1_expert_weights, Tensor fc2_expert_weights, " "ScalarType output_dtype, " "Tensor[]? quant_scales=None, " "Tensor? input_sf=None, " "int tp_size=1, int tp_rank=0, int ep_size=1, int ep_rank=0, int[]? profile_ids=None, " "bool use_fp8_block_scaling=False) -> Tensor"); } TORCH_LIBRARY_IMPL(trtllm, CUDA, m) { m.impl("fused_moe", &torch_ext::fused_moe); }